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Abstract

Pre-trained language models (LMs) have shown remarkable reasoning performance
using explanations (or “chain-of-thought” (CoT)) for in-context learning. On the
other hand, those reasoning tasks are usually presumed to be more approachable
for symbolic programming. To make progress towards understanding in-context
learning, we curate synthetic datasets containing equivalent (natural, symbolic) data
pairs, where symbolic examples contain first-order logic rules and predicates from
knowledge bases (KBs). Then we revisit neuro-symbolic approaches and design
a model LMLP that learns from demonstrations containing logic rules and corre-
sponding examples to iteratively reason over KBs, recovering Prolog’s backward
chaining algorithm. Comprehensive experiments are included to systematically
compare LMLP with CoT in deductive and inductive reasoning settings, showing
that LMLP enjoys much better length generalization even with substantially less
parameters.

1 Introduction

There are emerging interests in leveraging LMs to enable planning [23, 15], heuristic search [11] and
symbolic inference [49, 55, 56]. Among them, chain of thought prompting [49] shows that taking
(input, explanation, output) as in-context examples for LMs can lead to significant perfor-
mance gain in reasoning tasks. However, like most fine-tuned LMs, generalizing compositionally is
still challenging [58], which means that it struggles to reuse knowledge for solving harder problems
with unseen combinations [22, 1, 19].

One notable case is that LMs would suffer from catastrophic performance degradation when tested
on sequences longer than training ones (Figure 1). As a solution, least-to-most prompting [58] takes
inspirations from neuro-symbolic programs and proposes to tackle the challenge by modularized
prompting on the reduced problem. This divide-and-conquer strategy provides powerful tools to
improve LMs’ reasoning, but also poses an additional challenge: what is the right representations for
in-context samples? How does natural language explanation compared with symbolic provenance
when acting as prompts?

Our goal is to answer these questions by comparing the natural and symbolic paradigms closely.
To provide insights into in-context learning for reasoning tasks from a symbolic perspective, we
study relational reasoning over both natural language and KBs. This is because of the reliability
and controllability of KBs:2 given a query, it is easy to find a reasoning path in KBs as provenance
without hand-crafting rationales [59, 49, 55] as part of the prompts. To few-shot learn from symbolic
demonstrations and plan simultaneously in an explainable and scalable manner, we propose Language
Models as Logic Programmers (LMLP). LMLP uses logic rule templates and examples combined
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Figure 1: Relational reasoning performance (human evaluation accuracy) comparisons on the
CLUTRR-LP given training data with story length 2, 3, 4.

with pre-trained knowledge to do in-context learning iteratively for answering a relational query.
Specifically, given a goal query as the in-context example that can be interpreted as a question
answering (QA) task, we search or retrieve a related task example with a corresponding logic rule
(Figure 2). Then we concatenate the context and task description as the input of an autoregressive
planning LM. At each step of generation, we use a masked translation LM to compare the similarity
between the generated natural language sentences and encoded (subject, relation, object)
predicates in the KB. Therefore, each generated sentence is transformed into a top-k similar predicate
and the reasoning path is confined within the KB. The process is iterated until a predefined maximum
iteration or the target of interest is reached (Figure 3) and the generated reasoning path is evaluated
manually.

To evaluate the reasoning capability of CoT and LMLP, we curate two datasets and design a series
of experiments, aiming to compare two recent in-context learning paradigms and explore both
symbolic and naturalistic scenarios. Specifically, we adopt synthetic datasets containing (natural,
symbolic) data pairs. The symbolic part contains predicates and first-order logic (FOL) rules which
are well-suited for investigating the role of symbolic representations for few-shot reasoning. And the
natural part includes a natural language story with the same set of entities and relations. Moreover, we
create experimental settings that are infavorable for LMLP since (i) we use GPT-2 and SentenceBERT
as its backbones, which is known to be of much smaller scale compared to CoT which is usually
based on GPT-3 [6] or PaLM [9]; (ii) LMs are pre-trained over natual language sentences as opposed
to KBs, which creates substantial gaps in semantics and representations, thus poses a grounding
challenge where LMs are known to be ineffective [3].

PROMPT
Task: A's sister is C
Step 1: A's brother is B
Step 2: B's sister is C

Task: George's sister is Nancy
Step 1: George's brother is Dale
Step 2: Dale's sister is Nancy

Task: Joseph's sister is Katherine

OUTPUT
Step 1: Joseph's mother is Mary
Step 2: Mary's daughter is Katherine

Figure 2: A deductive reasoning example
for LMLP. LMLP retrieves a first-order
logic rule and its corresponding grounded
example to answer the target task. The rea-
soning path explains the concept of sister.

Through conrolled experiments on relational reasoning,
we find that (i) CoT prompting still struggles to solve
compositionality challenge. On the other hand, as rea-
soning length increases, even under the above unfair
settings, LMLP can still work much more reliably by
taking symbolic inputs (predicates) to explicitly separate
logic and control for improved problem-solving [21].
(ii) It is a common belief that large pre-trained LMs
learned via imitation are not grounded in contexts that
required learning with rich experiences. However, exper-
imental results show that eliciting LMs with logic rules
and examples using in-context learning, which maps the
conceptual structure of the space learned from text onto
a new structured space, is sufficient for solving some
challenging reasoning tasks over KBs. (iii) LMs can-
not solve relational reasoning tasks effectively if proper
demonstrations containing target relation and correct
input-label mappings are not provided, which is comple-
mentary to evidence in in-context examples which are
poorly understood and manifest many intricate design
choices [57, 25, 29].
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2 Related Works

Neuro-symbolic reasoning approaches are proposed for logic programming in statistical relational
learning (SRL) but they usually have several key limitations. General ILP (Inductive Logic Program-
ming) problem involves several steps that are NP-hard: (i) the rule search space grows exponentially in
the length of the rule; (ii) assigning the logic variables to be shared by predicates grows exponentially
in the number of arguments, which we refer as variable binding problem; (iii) the number of rule
instantiations needed for formula evaluation grows exponentially in the size of data. A fundamental
challenge in logic programming is to separate logic and control for improved efficient problem-
solving [21]: with a determined control or theorem-proving strategy, the remaining process is to
specify what is to be done via logic programming. Following the principle, traditional neuro-symbolic
algorithms like backward chaining [43] and its continuous relaxation [30, 31, 56] are proposed, where
unification between terms is replaced by the similarity between their embedding representations. We
refer readers to Appendix A for more details and emphasize that those hybrid approaches can be
inefficient and ineffective. Instead, with LMs, one can model the distribution of optimal decisions,
and generate suitable candidate steps to proceed. Therefore, LMs offer a generic way of modeling
the output space and executing classic symbolic algorithms.

PROMPT
Task: A's sister is C 
Step 1: A's brother is B 
Step 2: B's sister is C

Task: George's sister is Nancy 
Step 1: George's brother is Dale
Step 2: Dale's sister is Nancy

Task: Joseph's sister is Katherine
Step 1: Joseph's mother is Mary

OUTPUT
Joseph's mother is Mary

PROMPT
Task: A's sister is C 
Step 1: A's brother is B 
Step 2: B's sister is C

Task: George's sister is Nancy 
Step 1: George's brother is Dale
Step 2: Dale's sister is Nancy

Task: Joseph's sister is Katherine

⋯
Stop when:
Predefined maximum 
iterations or the target 
of interest is reached

Figure 3: Illustration of step-wise prompting of LMLP.

In-context learning concerns feeding input texts describing a task with some examples to the
black-box model for learning the task [6]. Many works show that there are intricate design choices
like prompt formats [16, 25, 57, 29], example choices and their ordering [57, 27], pre-training data
distribution [52, 45, 7] and model architectures [7] to improve the LMs’ powerful and versatile
in-context learning ability. There are recent works focusing on bootstrapping LMs with natural
language explanations, intermediate steps, or rationales for reasoning [59, 49, 33, 55]. Recent works
showcase both some positive [10] and negative results [17, 14, 47] in adapting LMs for symbolic
or logical reasoning. Though there are some encouraging progress [10, 49, 9, 55], they require a
significant amount of computation for re-training and human annotations about reasoning paths
or explanations [59, 49]. Moreover, their entangled nature with natural language make them hard
to make robust inference over symbolic factual knowledge. However, our goal is fundamentally
different from theirs in investigating the role of symbolic representations on few-shot reasoning
using in-context learning. Moreover, related works typically finetune the model using rationales or
explanations [59, 55] or focus on natural language based reasoning such as commonsense reasoning,
arithmetic reasoning, open-domain question answering [49], concept grounding [34] etc. Synthetic
ontology datasets are constructed in [44] to understand the failure modes of CoT reasoning but they
are in natural language forms instead of investigating the reasoning done over interpretable symbolic
structures as we do. Therefore, all the above works are substantially different from our goal of
exploring the representations of prompts in-context learning.

3 Methodology Overview

We consider the reasoning task with an SRL query as the question we are interested in with some
background knowledge as the context. The relational information in the query and context can be
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expressed either using natural language or a (subject, relation, object) predicate/triplet.
There is a KB with facts F and (FOL) rules R to support the QA above. There are two ways for
representing the problem - symbolic or natural language, which leads to the designs below.

Datasets construction. As shown in Table 1, we need to curate new symbolic datasets from the
original ones into (i) A query subset containing predicates needed for proving. (ii) A set of facts
F containing all the available facts/predicates, which composes a KB, and (iii) A set of rules R
containing examples (A task and its proofs) extracted from the training set using backward chaining
based neuro-symbolic reasoner [42]. See appendix C.2 for more details.

Dataset Natural Language Samples Query Facts F Logic rulesR

CLUTRR

Task: What’s the relationship between Ashley and Nicholas?
Story: Ashley told her daughter Lillian to wash up.
Dinner was ready. Lillian called her brother, Nicholas
up to see how he was doing after surgery.

(Ashley, son, Nicholas)
(Ashley, daughter, Lillian)
(Lillian, brother, Nicholas)

⋯
Task: Ashley’s son is Nicholas
Step 1: Ashley’s daughter is Lillian
Step 2: Lillian’s brother is Nicholas

Countries Task: Is palau located in oceania? (palau, locatedIn, oceania) (palau, locatedIn, micronesia)
⋯

Task: palau locatedIn oceania
Step 1: palau locatedIn micronesia
Step 2: micronesia locatedIn oceania

Table 1: Examples of data processing and curation.

Language Models as Logic Programmers. In LMLP, given a query Task: Joseph’s
sister is Katherine, which consists of two entities Joseph, Katherine and a target re-
lation sisiter. Our task is to find a proof path from Joseph to Katherine where the relation-
ship sisiter can be correctly inferred. On a high level, LMLP leverages an abstract logic rule
Sister(A,C) ← Brother(A,B) ∧ Sister(B,C) and its grounded example Sister(George,
Nancy) ← Brother(George, Dale) ∧ Sister(Dale, Nancy) to derive the answer for the
query Sister(Joseph, Katherine) (Figure 4(a)).

To achieve this goal using in-context learning, at first, examples and logic rules inR are selected. For
example, in Figure 3, LMLP samples one logic rule and its grounded example, which is concatenated
with the query Task: Joseph’s sister is Katherine as a prompt for the planning LM.
LMLP samples a logic rule with the same target relation (e.g., sister in the above example) but
different entities.3 We then repeatedly generate contents by prompting an autoregressive planning
LM Pθ (Figure 3): The generated output is converted to particular predicates in the KB using the
similarity of the embedding from a translation LM Tϕ, implemented as a sentence-specific Masked
LM. By constraining the output space of Pθ with an external KB this way, LMLP is expected to
produce more plausible provenance for explaining the reasoning process of final prediction. To
improve coherency, we enforce the chain rule transition constraints: the tail entity of the previous
predicate should be the same as the head entity of the next predicate for each output step. The model
terminates when predefined maximum iterations or the target of interest is reached. The faithfulness
of the reasoning path is governed by post-hoc human evaluations. The overall algorithm is described
in Algorithm 1 in Appendix B.

Using prompting supported by KBs, we bootstrap the reasoning process from LMs in a few-shot
manner (Figure 3). This is in stark contrast to popular methods that need expensive human annotations
and retraining [59, 48, 15, 49, 55] or uncontrollable using only pre-trained knowledge [20].

PROMPT
Task: A's sister is C
Step 1: ⋯ ⋯

Planning LM Translation LM

OUTPUT
Step 1: Joseph's mother is Mary

KB

(a) LMLP

PROMPT
Question : Nettie's brother Paul took her to the fair when she was little. Paul also 
brought his brother Samuel. Shantel and husband Harold are trying to get custody of 
Shantel's granddaughter Nettie before she gets placed in foster care. What is the 
relation between Samuel and Harold?
Answer: Harold's wife is Shantel, Shantel's granddaughter is Nettie, Nettie's brother is 
Paul, Paul's brother is Samuel. The relation of Samuel between Harold is grandson.

Question: Chris wants to throw a surprise party for his brother Theodore. Chris‘s 
brother Charles helps pick the decorations. Frances combed her grandson Charles’s 
hair. She wanted him to look good for his first day of school. What is the relation 
between Frances and Theodore?

OUTPUT
Answer: Frances‘s grandson is Charles, Charles’s brother is Chris, Chris‘s brother 
is Theodore. The relation of Frances between Theodore is grandson.

(b) CoT

Figure 4: Schematic overview of (a) LMLP and (b) CoT.

3We compare other sampling strategies in Table 2
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Chain-of-Thought prompting. CoT [49] solves complicated multi-step reasoning tasks by providing
explanations, which is also intuitive for our multi-hop SRL tasks since we can take intermediate
reasoning paths as explanations.

Figure 4(b) shows an example of applying CoT to solve an SRL task from the CLUTRR dataset
[46]: given an in-context sample in the form of (input, explanation, output). LMs are
expected to imitate the reasoning process of the given explanation to generalize to a new query. The
explanation of each question is generated just the same as the rules setR, which extracted from the
training set using a neuro-symbolic reasoners and converted to natural language forms. Specifically,
the in-context exemplar adapts LMs to another sample containing multiple relations and a query
for the relation between two entities “What is the relation between Theodore and Frances?”, CoT
first generates a reasoning path from Frances to Theodore, namely “France’s grandson is Charles,
. . . , Chris’s brother is Theodore.”, and finally answers the query: “The relation of Frances between
Theodore is grandson”. With such a prompt, LMs are expected to generate both the reasoning paths
and the resulting queried relation. Note that the explanation in CoT is extracted from the story in the
question, which contains much clearer information than the logic rules for LMLP.

4 Experiments

We now describe the experimental setups, empirically evaluate LMLP and compare it with existing
methods. See Appendix C for full details of data preprocessing and performance evaluation.

Settings. We curate two datasets for evaluating the in-context learning capability of LMs for
reasoning: CLUTRR-LP and Countries-LP, which are based on CLUTRR [46] and Countries [4]
datasets respectively. CLUTRR [46] contains a group of KBs, where each node denotes a family
member and edges are family relations. The target of CLUTRR dataset is to infer a two-family
members’ relationship that is not explicitly mentioned. The training set of CLUTRR consists of
graphs that the target relation can be inferred by traversing a limited number of edges while the
relation in the test set needs more traversing steps for inference, which allows controlled studies
on compositionality. Another intriguing property of CLUTRR is that there are ground truth one-
to-one correspondances between KBs and natural language stories, which exactly suits our needs.
Countries [4] concerns link prediction, where countries, regions, and sub-regions are entities and
relations containing LocatedIn and NeighborOf. Countries has three tasks, R1,R2, and R3 based on
three different data partitions strategies according to [42].

Table 2: Numerical results and ablation on the length of test samples on CLUTRR-LP.

Planner No Prompt Only Rule Random Entity-based CoT LMLP-reverse LMLP
0.0973 0.1514 0.1622 0.2919 0.2000 0.173 0.3730 0.3297
0.1810 0.1238 0.1524 0.2095 0.1429 0.1365 0.3048 0.2476
0.2258 0.2000 0.2129 0.2323 0.1742 0.1032 0.3742 0.2581
0.1037 0.2222 0.2000 0.3111 0.2370 0.1506 0.3556 0.3556
0.1048 0.1935 0.2177 0.1613 0.1855 0.0914 0.3548 0.2984
0.1230 0.2869 0.2131 0.3934 0.2705 0.123 0.5246 0.4754

5 Concluding Remarks

We systematically explores in-context learning of LMs through a symbolic reasoning perspective,
showing that LMs can be prompted with logical demonstrations to generate plausible provenance
for reasoning tasks over KBs. The empirical superiority of LMLP provides fresh insights towards
understanding in-context learning suggests a way to ground GPT that types language to non-linguistic
symbols in the KB. Moreover, few-shot in-context learning with LMs provides a convenient way to
incorporate background knowledge without re-training. As its implications, it supports interpretable
multi-hop reasoning and easy integration of domain knowledge that are key desiderata of neuro-
symbolic approaches. We hope our empirical study can inspire more explorations on the trade-off
between natural language and programming language for effective adaptation and planning of LMs.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [No]
(b) Did you include complete proofs of all theoretical results? [No]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [Yes]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes]
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Appendix

A Extended Related Work

Neuro-Symbolic Reasoning. ILP [32] and its neural version [54] are unable to reason about disjoint
relations in confront of missing links when KBs are noisy like in FreeBase, which means ILP only
synthesizes rules based on existing relations. Methods like Neural-LP [53] and RNNLogic [37]
require enumeration of all possible rules given a max rule length T. Thus the complexity of these
models grows exponentially as maximum rule length increases, which is an significant disadvantage
for systematicity problems. For deductive reasoning, NTP [42] and its improved versions [30, 31]
require hand-crafted templates to imitate backward chaining for deductive reasoning. This belies the
considerable user burden of authoring the templates which then fundamentally biases the tool toward
a specific subset of programs that the author has in mind. Moreover, the performance and efficiency
of NTP is far from satisfactory: the performance usually lags far behind its neural counterparts
like knowledge graph embedding methods [24]; during both training and inference, NTPs need to
compute all possible proof trees needed for proving a query, relying on the continuous unification of
the query with all the rules and facts in the KB. The search space of existing works is exponentially
large, which makes them hard to scale up in general [30, 8].

LMs for Theorem Proving. Most works focus on proving formal mathematical theorems: GPT-f [36]
shows promising results by generative language modeling over mathematical formulas. Systematicity
of LMs when training on proofs is evaluated in [13] but shows negative results in generalizing to
unseen proof steps in extrapolation and complex language. Three synthetic tasks inspired by three
reasoning primitives of deduction, induction, and abduction are demonstrated in [51]. The above
works provide insights into understanding LMs’ reasoning capabilities. Though they share similar
problem structures like compositionality with ours, they fundamentally require large-scale pre-training
and fine-tuning due to the mismatch between Wikipedia pre-training corpora and mathematical
formulas. Such a re-training requirement not only results in computational inefficiency but lacking in
compositional generalization to longer proof steps unseen during training [13].

Symbolic Reasoning with LMs. Large LMs pre-trained on open-domain text corpora have achieved
impressive advances in natural language generation and understanding tasks [18, 6]. By self-
supervised imitation on human-generated texts, LMs contain rich factual knowledge [35, 5, 41]
and linguistic structures [28], serving as a versatile inference regime for various downstream tasks
[6, 26]. Among them, GPT-3 stands out by its few-shot generalization to unseen cases without further
fine-tuning given in-context samples as demonstrations [6]. However, it is a common belief that LMs
have not yet enjoyed a comparable success in tasks that require extensive planning and grounding
[12, 2, 3] as well as symbolic reasoning [17, 14, 39].

B Algorithm Description

Algorithm 1 describes the procedure or LMLP. It can also be illustrated in Figure 4(a).

C Additional Experimental Setups and Results

Implementation details. For LMLP, we implement the planning LMPθ as GPT-2 [38], the translation
LM Tϕ as Sentence BERT (Sent-BERT) [40] based on Hugging Face Transformers [50]. The default
model for Translation LM is Sentence-RoBERTa-Large and for Planning LM is GPT2-Large [38]
pretrained on large corpora. For CoT, we follow the original paper [49] to sample in-context samples
and use GPT-3 (text-davinci-002) which is accessed using OpenAI API for implementation. We
conduct all the experiments on a machine with four Nvidia TITAN XP (10GB) GPU cards.

Since prompt formats lead to significant performance variations [25], we propose to explore two
simple design choices for LMLP and find that they can further boost the reasoning capacity. (i)
Multiple examples for prompting. Denote N the number of examples we used in one proof task.
Table 9 shows two examples with N = 1 and N = 2 are supplied respectively. The intuition is
that, getting more examples in the prompt can make LMs better recognize the proof task and thus
produce more reliable reasoning paths. See the experimental section for empirical verification. (ii)
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Algorithm 1 Generate proof path from Pre-Trained Language Models.

Require: Planning LM Pθ, Translation LM Tϕ, Query set Q that contains all query triplets, F that
contains all available facts,R that contains all the available rules or proof examples.
for (s, r, o) ∈ Q do // s, r, o denote subject entity, relation and object entity respectively.

Find e ∈ F , whose task relation is r. Convert e to the prompt e′.
while Max step is not reached do

Sample 10 sentences {xi}10i=1 from Pθ with current prompt.
Set F ′ ∈ F whose first entity is s.
if ∣F ′∣ == 0 then

Break // No available facts in the F start with entity s.
for x ∈ {xi}10i=1 do

scorei =max cosine(Tϕ(x, r));∀r ∈ F ′// Calculate cosine similarities of s to facts in
F ′.

idx = argmax cosine(Tϕ(x, r));∀r ∈ F ′// Select r ∈ F ′ with the highest similarity to
x.

x′ = F ′[idx]
Choose the highest score rule x′ = (s, r′, o′) as the next proof step and append it to the

prompt.
if o′ == o then

Break // The object entity converges to the target entity o.

Table 3: Qualitative comparison of CoT and LMLP over the same example on CLUTRR-LP.

CoT Prompting LMLP
Question: Wilhelmina took her uncle Hugh to the grocery store. Francisco and
his brother Wesley were wrestling. Wilhelmina, Francisco’s daughter, was
cheering on the competition. What is the relation between Hugh and Wesley?
Answer: Wesley’s brother is Francisco, Francisco’s daughter is Wilhelmina,
Wilhelmina’s uncle is Hugh. The relation of Hugh between Wesley is brother.

Question: Constance went shoe shopping with her sister Ellen. Elsie had a
daughter named Constance. Elsie had picked her daughter Margaret out
the cutest new dress to wear on her birthday. Charles and his sister Kathleen
have been best friends ever since childhood. Nadia and her father, James,
went to the marina. James’s daughter, Mabel, had purchased a boat, and
they were eager to see it. Mabel bought her mother, Ellen, a puppy for her
birthday. James hung his son Charles’s finger paintings on the refrigerator.
The paintings were right next to the paintings of Nadia, Charles’s sister.
Kathleen was n’t old enough to make any paintings for her father, James.
What is the relation between Margaret and Charles?
Answer: charles’ mother is nancy, nancy’s daughter is elizabeth,
elizabeth’s husband is john, john’s wife is mary, mary’s brother is george,
david’s nephews are william, william’s nephews are robert.

Task: A’s aunt is B
Step 1: A’s sister is C
Step 2: C’s mother is D
Step 3: D’s sister is B
Task: Carrie’s aunt is Lynn
Step 1: Carrie’s sister is Natasha
Step 2: Natasha’s mother is Cindy
Step 3: Cindy’s sister is Lynn

Task: Charles’s aunt is Margaret
Step 1: Charles’s sister is Nadia
Step 2: Nadia’s aunt is Margaret

Prompts Ensembling. Table 8 shows the results of different prompts for the same task. We can see
the influence of prompts on the generated proof path. The first few proof steps are largely similar
to the provided example. If the provided example supplies a wrong direction, the proof is likely to
be wrong. To study and exploit the benefit brought by different prompts, during experiments, we
propose to use K prompts alternatively for one task, where one task is marked to be successfully
proved if any of these K prompts gets the right result. Namely, a larger K means that we have a
higher probability of picking a good prompt. The default hyper-parameters N,K are set to one.

Evaluation metrics used in this work is the proven accuracy or success rate. For example, for the
target “Task: palau locatedIn oceania”, we begin with entity “palau” and select facts from the F . If
the chosen triplet ends with entity “oceania”, the proven path is correct, e.g., “micronesia locatedIn
oceania” in Table 1. For LMLP, if there is no chosen triplet ends with entity “oceania”, the prediction
is incorrect. For CoT, we can easily compare the final answer with the ground truth.

For every query set, we calculate the average proven success rate (Number of correct proven
paths/number of test samples). For the CLUTRR dataset, there are a large number of noisy triplets.
For example, the target in Table 1 is “Ashley’s son is Nicholas” while “Ashley’s husband is Nicholas”
is in F . Once the latter rule is chosen as one proof step, the proving process will terminate because
“Ashley’s husband is Nicholas” ends with the entity “Nicholas”, however, the proof path is wrong and
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Table 4: Ablation of LMLP on CLUTRR-LP.
Test Reasoning Length K=1 K=3 K=5 K=10 Avg

5 Hops 0.3946 0.6865 0.7838 1.0000 0.7162
6 Hops 0.5048 0.7143 0.7619 1.0000 0.7452
7 Hops 0.4323 0.8065 0.8774 1.0000 0.7790
8 Hops 0.5037 0.8000 0.8593 1.0000 0.7907
9 Hops 0.3710 0.6452 0.7500 1.0000 0.6915
10 Hops 0.5328 0.8279 0.8525 0.9180 0.7828

cannot induce the relation “son” between “Ashley” and “Nicholas”. To evaluate the correctness of
generated proof path, human evaluations are conducted. For each proof path, we ask annotators to
answer “Yes” or “No” to whether the target relation can be induced from the proof path.

C.1 Comparisons of LMLP and CoT

The goal of this part is to systematically compare LMLP with CoT both quantitatively and qualitatively
on SRL tasks to better understand the reasoning of LMs using in-context learning.

In Figure 1, we compare LMLP to CoT and the reported performances are all human evaluation
results. Qualitatively, CoT can get positive results on some query examples, for example, in Table 11,
we showcase two examples where CoT can generate a correct proof path and predict the target
relation at the same time. However, compared to LMLP, CoT attains inferior results on all query
sets with test reasoning length 5,6,7,8,9,10 even using GPT-3 for text generation. Besides, as the
reasoning length increases, the performance of CoT shows a clear downward trend. Table 11 shows
two negative examples, where the story contains sophisticated relations and the model cannot get the
right reasoning path or just generate a wrong relation. In contrast, LMLP can consistently achieves a
high proven success rate (Table 2) and human evaluation score (Table 6 in Appendix), which again
verifies the systematic generalization capability of LMLP. Table 3 shows examples with the same
task but processed by the two methods respectively, where CoT cannot get deduce a right relation
path from Margaret to Charles but LMLP can extract a simple yet right relation path. The reason
why LMLP is better than CoT can be that, although CoT decomposes complex multi-hop relation
reasoning tasks into a multi-step reasoning process and then predict the final results, the proof path is
all generated by LMs at once. The decomposition of LMLP to multi-hop reasoning tasks is more
thorough, where the generation of a proof path is divided into multi-steps and each step will be
projected into the KB, which is a much stronger inductive bias. Therefore, the decomposed tasks in
each step are easier to solve and the knowledge in the KB can be well exploited.

C.2 Data Generation.

CLUTRR-LP. CLUTRR has 9 subsets with difference story length, named l2, l3, . . . , l10. Follow-
ing [31], we convert l2, l3, l4 to theR and use l5, . . . , l10 to the query sets. As illustrated in Table. 1,
data samples in CLUTRR consist of a story and a target, where the target contains two entities and
the relation that is needed to be inferred, the story contains available triplets. Each sample in the
l2, l3, l4 will be converted to the format “Task: . . . , Step i: . . . ” and added to the R. Note that
all examples in the R have a story length of less than five, which enables us to test the systematic
generalization ability of LMLP. For CLUTRR, the story triplets in the R are not useful for test
target proving, because they are all from different relation graphs. For example, story triplets in the
l2, l3, l4 contain “(William’s brother is Steve)” while one test story on l5 contains “(William’s uncle
is Steve)”. During the evaluation, if the model chooses “(William’s brother is Steve)”, the proof
path will be wrong. However, the similarity of these two triplets is high, the model is then easy to
make errors and these noisy facts increase proof difficulties. We hence evaluate our methods in two
settings considering the number of noisy facts. The simplest setting (Test Facts Setting) is that,
when queries are from li, i ∈ [5, . . . ,10], the F only contains facts in li. In this case, the F5∼10 have
251,222,275,279,285,304 facts respectively. The most difficult setting is termed All Facts Setting.
We first extract facts in the F with length l2, l3, l4 and get totally 5,210 facts. When queries are
from li, i ∈ [5, . . . ,10], the F contains triplets in li, l2, l3, l4, where the additional 5,210 facts are not
useful for the proof path and are noisy facts. The All Facts Setting is set as our default setting and
experimental results of the Test Facts Setting are mainly in the Appendix. For CoT, the F is needless
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and the construction of prompt examples is slightly different from the procedure above. Specifically,
as shown in Figure 4(b), for each target in the training samples, we need to preserve the story and
extract a proof path for the target.

Countries-LP. Training samples in Countries are triplets that describe the neighbor of relation or
located in relation of two regions/subregions/countries and can thus be directly used as F . Because
the three tasks (S1, S2, S3) [31] have different training sets and thus have different F . Test samples in
Countries are also triplets with specific entities and relations, hence the query set is just the test set
of the original Countries dataset. One main difficulty in applying the proposed method to Countries
is the lack of off-the-shelf proof paths (R). The CTP [31] model is trained and used for proving
each triplet in the training set. CTP returns the scores of the possible proof path and the proof with
the maximum score is iteratively searched as added into the R. After that, 924,906,705 available
examples are found for S1, S2, S3 tasks respectively.

C.3 Analysis of LMLP

Given the above observations that LMLP outperforms CoT by a large margin, we systematically
analyze LMLP with extensive experiments below.

Ablation Studies on prompting strategies. As illustrated in Table 2, No Prompt means that we
only feed the target directly and generate each step, prompts in the Only Rule baseline is one proof
example with entities replaced by some symbols. We also compare LMLP to Language Planner [15],
which first finds the most similar target in theR and uses such an example as the prompt. LMLP-
reverse swaps the position of the abstract logic rule and its grounded example in the prompt of LMLP.
For example, in Figure 3, the in-context prompt of LMLP-reverse will place Sister(George,
Nancy) ← Brother(George, Dale) ∧ Sister(Dale, Nancy) before its abstract logic rule
Sister(A,C) ← Brother(A,B) ∧ Sister(B,C). Examples for all baselines are shown in Ap-
pendix Table 9.

Table 2 shows that directly applying Language Planner for relational reasoning does not work and
using only facts or no prompt attain inferior performance. The possible reason for the inferior
performance of Planner can be that it finds the example from R with the most similar task as the
prompt, which usually retrieves rules with the same entities of the goal task. However, for reasoning
tasks over KBs, relation contains much more information of the task than the entity. As shown
in Table 9, for the task “Patricia’s uncle is Donald”, Planner finds the example with task “David’s
nephew is Don”, whose following proofs do not make sense for the relation “uncle”. LMLP in
contrast finds an example whose task has the same relation as the goal predicate, which is more
informative.

Table 5: Results of LMLP on Countries-LP. S1, S2, S3 [31] are three different tasks with different F
(See experimental setting for the details).

K=1 K=3 K=5 K=10 A Long Example

S1 0.7083 0.9583 1.0000 1.0000
Task: A locatedIn C
Step 1: A neighborOf B
Step 2: B locatedIn C

S2 0.5000 0.8750 0.9583 1.0000
Task: uruguay locatedIn south_america
Step 1: uruguay neighborOf argentina
Step 2: argentina locatedIn south_america

S3 0.7500 0.9167 0.9167 1.0000

Task: sudan locatedIn africa
Step 1: sudan neighborOf central african republic
Step 2: central african republic neighborOf chad
Step 3: chad neighborOf south sudan
Step 4: south sudan neighborOf dr congo
Step 5: dr congo neighborOf republic of the congo
Step 6: republic of the congo locatedIn middle africa
Step 7: middle africa locatedIn africa

Effects of K. We show evaluation results on CLUTRR-LP in Table 4 and the proposed method can
generate realistic and correct proof paths. A large K can further boost the performance, which also
verifies the importance of prompts ensembling: Table 5 in the Appendix shows the performance
on Countries-LP where almost all the query samples can be proved correctly with a large K. One
interesting phenomenon is that LMLP can generate a much longer proof path even though the proof
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path length in the rule setR is less than 3. This manifests a potential improvement with respect to
the significant weakness in systematic generalization of fine-tuning or re-training of LMs [46]. The
R of CLUTRR-LP contains only examples whose proof paths are less than five. However, during
testing, our model can produce proof paths much longer than five steps and perform well on all query
sets. Effects of N . Recall that N denotes the amount of in-context examples used in one proof task.
Table 7 shows an example when N = 2. Figure 5(a) gives ablation results, where a larger N can bring
consistent performance gains. However, longer prompts require larger GPU memory and there is a
trade-off between memory and performance.

Robustness to noisy facts. As elaborated in Appendix C.2, we have 5210 noisy facts in total.
Figure 5(b) shows the results when we vary the number of noisy facts, where the noisy rate is 0.5
means that we add 5210 ∗ 0.5 facts to the F during evaluation. Even though when all the 5,210 noisy
facts are added to the F (251, 222, 275, 279, 285, 304 facts for the six sets of facts F5∼10), namely
more than 95% facts are noisy, the performance is still favorable.
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Figure 5: (a) Effect of the number of templates for LMLP on CLUTRR-LP. (b) The effects of noisy
facts for LMLP on CLUTRR-LP. Ablation on the scaling of (c) Planning LMs.

C.4 Analysis of Demonstrations of In-context Learning

Besides results in Table 3, we conduct additional qualitative analysis of demonstrations of in-context
learning.

Failure cases analysis of baselines. Since the generated sentences are closely related to the prompt,
Table 10 in Appendix shows that if we randomly choose prompts, the generated proof path has
relations similar to the prompt but is wrong for the given task. For entity-based prompts, since the
task has the same start entity as the in-context exemplar, hence the generated step 1 in this setting are
very similar, leading to many wrong proof paths. Language Planner, without chain rule constraint, the
generated triplets are chaos, e.g., in Example 1, the generated proof does even not contain the subject
“Jon” and thus exactly wrong. Although the proposed LMLP attains a high success rate, there are also
some failure cases. As shown in Appendix Table 8, an appropriate prompt needs to be chosen for the
right proof paths.

Human evaluation results are shown in Appendix Table 6. When the F is small and without many
noisy facts, almost all ablations attain high accuracy besides the language planner. Namely, the
language planner either fails to prove the target task or the proof path is wrong. As we increase the
number of noisy facts, the proposed LMLP shows high robustness and attains higher accuracy than
other ablations.

Takeaways. Similar to previous works [25, 29], we find that in-context learning performance varies
greatly with choices of exemplars (Table 4). One of the key findings in [29] is that even without
any labeled data, LMs can achieve k-shot performance by simply prompting with demonstrations
containing unlabeled inputs. Our findings are generally in-line is in line with the importance of
input-label formats highlighted in the work. However, we show in Table 7 and 9 that the correct
mapping of rule-example pairs are important since given only rules with symbols like X,Y,Z rather
than concrete entities like China makes LMLP fail catastrophically. We leave explorations about
zero-shot baselines of symbolic reasoning over KBs as future work.
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Table 6: Human evaluation of the proposed technique. A 0.9 accuracy during human evaluation
means that 90% of the model’s successful proof paths in Table 2 are correct and others give incorrect
reasoning paths even if they converge to the target entity. Hence the true proven success rate of
LMLP in the query set with Test Reasoning Length 5 is 0.3946×0.8356.

Test Reasoning Length Planner No Prompt Only Rule Random Entity-based LMLP-reverse LMLP

5 0.4615 0.7368 0.7143 0.7941 0.7872 0.9200 0.8356
6 0.6129 0.5417 0.5926 0.5366 0.5000 0.6531 0.4906
7 0.7292 0.6458 0.6471 0.5217 0.5625 0.8406 0.5970
8 0.4375 0.6977 0.6923 0.7368 0.7442 0.7619 0.7059
9 0.5417 0.7500 0.8182 0.7407 0.7419 0.8462 0.8043

10 0.5556 0.8750 0.7647 0.8421 0.8684 0.9846 0.8923

Table 7: Sensitivity analysis of prompt formats using LMLP in the Countries dataset [42].

Method Prompt Output

Facts w/o Provenance Task: Kazakhstan locatedIn Asia Step 1: Kazakhstan locatedIn CentralAsia
Step 2: CentralAsia locatedIn Asia

Facts w/ Provenance

Task: Kazakhstan locatedIn CentralAsia
Step 1: Kazakhstan neighborOf Uzbekistan
Step 2: Uzbekistan locatedIn CentralAsia
Task: Kazakhstan locatedIn Asia

Step 1: Kazakhstan neighborOf China
Step 2: China neighborOf India
Step 3: India locatedIn SouthernAsia
Step 4: SouthernAsia locatedIn Asia

LMLP (N=1)

Task: X is located in Z
Step 1: X is located in Y
Step 2: Y is located in M
Step 3: M is located in Z
Task: Kazakhstan locatedIn Asia

Step 1: Kazakhstan neighborOf kyrgyzstan
Step 2: Kyrgyzstan neighborOf Uzbekistan
Step 3: Uzbekistan neighborOf Afghanistan
Step 4: Afghanistan neighborOf china
Step 5: China neighborOf India
Step 6: India neighborOf Nepal
Step 7: Nepal locatedIn Asia

Task: X locatedIn Y
Step 1: X neighborOf M
Step 2: M neighborOf N
Step 3: N locatedIn Y
Task: Kazakhstan locatedIn Asia

Step 1: Kazakhstan locatedIn CentralAsia
Step 2: CentralAsia locatedIn Asia

Task: X locatedIn Y
Step 1: X neighborOf M
Step 2: M locatedIn N
Step 3: N locatedIn Y
Task: Kazakhstan locatedIn Asia

Step 1: Kazakhstan locatedIn CentralAsia
Step 2: CentralAsia locatedIn Asia

Task: X locatedIn Y
Step 1: X neighborOf Z
Step 2: Z locatedIn Y
Task: Kazakhstan locatedIn Asia

Step 1: Kazakhstan neighborOf kyrgyzstan
Step 2: Kyrgyzstan neighborOf Uzbekistan
Step 3: Uzbekistan neighborOf Afghanistan
Step 4: Afghanistan neighborOf Tajikistan
Step 5: Tajikistan neighborOf China
Step 6: China neighborOf India
Step 7: India neighborOf Nepal
Step 8: Nepal locatedIn Asia
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Table 8: Failure cases analysis - the results of different prompts for the same task.

Method Prompt Output

No Prompt Task: Richard’s father is Donald Step 1: Richard’s grandmother is Elizabeth
Step 2: Elizabeth’s son is Donald

Random Prompt

Task: C’s father is B
Step 1: C’s brother is A
Step 2: A’s father is B
Task: Janet’s father is George
Step 1: Janet’s brother is John
Step 2: John’s father is George
Task: Pat’s grandfather is Jose

Step 1: Pat’s uncle is Samuel
Step 2: Samuel’s father is Jose

Rule Only

Task: B’s father is C
Step 1: B’s mother is D
Step 2: D’s son is A
Step 3: A’s father is C
Task: Richard’s father is Donald

Step 1: Richard’s grandmother is Elizabeth
Step 2: Elizabeth’s son is Donald

Entity-based Prompt

Task: C’s brother is A
Step 1: C’s brother is B
Step 2: B’s brother is A
Task: Milton’s brother is Glen
Step 1: Milton’s brother is Michael
Step 2: Michael’s brother is Glen
Task: Milton’s mother is Antonia

Step 1: Milton’s daughter is Margaretta
Step 2: Margaretta’s grandmother is Antonia

Language Planner

Task: David’s nephew is Don
Step 1: David’s mother is Frances
Step 2: Frances’s daughter is Lynn
Step 3: Lynn’s son is Don
Task: Patricia’s uncle is Donald

Step 1: Richard’s father is Donald

LMLP (N=1)

Task: B’s father is C
Step 1: B’s mother is D
Step 2: D’s daughter is A
Step 3: A’s father is C
Task: Bobby’s father is Hugh
Step 1: Bobby’s mother is David
Step 2: David’s daughter is Marie
Step 3: Marie’s father is Hugh
Task: Richard’s father is Donald

Step 1: Richard’s mother is Maria
Step 2: Maria’s husband is Donald

LMLP (N=2)

Task: E’s father is B
Step 1: E’s daughter is A
Step 2: A’s sister is D
Step 3: D’s brother is C
Step 4: C’s grandfather is B
Task: Louis’s father is Harold
Step 1: Louis’s daughter is Jennifer
Step 2: Jennifer’s sister is Nettie
Step 3: Nettie’s brother is Samuel
Step 4: Samuel’s grandfather is Harold
Task: D’s father is C
Step 1: D’s husband is A
Step 2: A’s son is B
Step 3: B’s grandfather is C
Task: Lena’s father is James
Step 1: Lena’s husband is Wesley
Step 2: Wesley’s son is Theodore
Step 3: Theodore’s grandfather is James
Task: Richard’s father is Donald

Step 1: Richard’s grandmother is Elizabeth
Step 2: Elizabeth’s son is Donald

Table 9: The comparison of different demonstrations on results.
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Wrong Right

Task: C’s nephew is A
Step 1: C’s son is D
Step 2: D’s aunt is B
Step 3: B’s son is A

Task: Lena’s nephew is Richard
Step 1: Lena’s son is Theodore
Step 2: Theodore’s aunt is Cindy
Step 3: Cindy’s son is Richard

Task: Donald’s nephew is Gilbert
Step 1: Donald’s son is Edgar
Step 2: Edgar’s mother is Marge
Step 3: Marge’s son is John

Task: A’s nephew is B
Step 1: A’s brother is C
Step 2: C’s son is B

Task: Theresa’s nephew is John
Step 1: Theresa’s brother is George
Step 2: George’s son is John

Task: Donald’s nephew is Gilbert
Step 1: Donald’s brother is James
Step 2: James’s grandson is Johnson
Step 3: Johnson’s father is Hugh
Step 4: Hugh’s brother is Wesley

Task: C’s nephew is A
Step 1: C’s son is D
Step 2: D’s aunt is B
Step 3: B’s son is A

Task: Lena’s nephew is Richard
Step 1: Lena’s son is Theodore
Step 2: Theodore’s aunt is Cindy
Step 3: Cindy’s son is Richard

Task: Donald’s nephew is Gilbert
Step 1: Donald’s son is Edgar
Step 2: Edgar’s mother is Marge

Task: A’s nephew is E
Step 1: A’s son is D
Step 2: D’s grandmother is B
Step 3: B’s son is C
Step 4: C’s son is E

Task: Antonio’s nephew is Allan
Step 1: Antonio’s son is Bobby
Step 2: Bobby’s grandmother is Shantel
Step 3: Shantel’s son is Robert
Step 4: Robert’s son is Allan

Task: Donald’s nephew is Gilbert
Step 1: Donald’s son is Jeremy
Step 2: Jeremy’s grandfather is Jose
Step 3: Jose’s son is Samuel
Step 4: Samuel’s son is Gilbert

Table 10: Failure cases analysis of different baselines. Examples for each method are all from the
same setting.

Method Example 1 Example 2

Random Prompt

Task: D’s mother is B
Step 1: D’s father is E
Step 2: E’s daughter is C
Step 3: C’s brother is A
Step 4: A’s mother is B
Task: Allan’s mother is Marie
Step 1: Allan’s father is Robert
Step 2: Robert’s daughter is Michelle
Step 3: Michelle’s brother is Ronald
Step 4: Ronald’s mother is Marie
Task: Jose’s granddaughter is Margaretta
Step 1: Jose’s father is William
Step 2: William’s niece is Margaretta

Task: A’s grandson is B
Step 1: A’s granddaughter is C
Step 2:C’s brother is B
Task: Clarence’s grandson is James
Step 1: Clarence’s granddaughter is Charlotte
Step 2: Charlotte’s brother is James
Task: Samuel’s nephew is Charles
Step 1: Samuel’s aunt is Marie
Step 2: Marie’s grandfather is Charles

Entity-based Prompt

Task: B’s granddaughter is A
Step 1: B’s daughter is D
Step 2: D’s brother is C
Step 3: C’s daughter is A
Task: James’s granddaughter is Juanita
Step 1: James’s daughter is David
Step 2: David’s brother is Joshua
Step 3: Joshua’s daughter is Juanita
Task: James’s niece is Mary
Step 1: James’s daughter is Mary

Task: B’s granddaughter is D
Step 1: B’s grandson is C
Step 2: C’s brother is A
Step 3: A’s sister is D
Task: James’s granddaughter is Andrea
Step 1: James’s grandson is Thomas
Step 2: Thomas’s brother is Don
Step 3: Don’s sister is Andrea
Task: James’s nephew is Don
Step 1: James’s grandson is Thomas
Step 2: Thomas’s brother is Don

Language Planner

Task: James’s father is Dale
Step 1: James’s sister is Charlotte
Step 2:Charlotte’s father is Dale
Task: Jon’s grandfather is Daniel
Step 1: James’s grandmother is Mary
Step 2: Dorothy’s mother is Mary
Step 3: Mary’s husband is Daniel

Task: Lynn’s nephew is Michael
Step 1: Lynn’s brother is Hugh
Step 2:Hugh’s son is Johnson
Step 3:Johnson’s brother is Michael
Task: Bonnie’s nephew is Michael
Step 1: Ross’s brother is Michael

LMLP (N=1)

Task: B’s father is C
Step 1: B’s son is D
Step 2: D’s mother is A
Step 3: A’s father is C
Task: Hugh’s father is James
Step 1: Hugh’s son is Bobby
Step 2: Bobby’s mother is David
Step 3: David’s father is James
Task: Irene’s father is Milton
Step 1: Irene’s grandfather is Jose
Step 2: Jose’s mother is Mary
Step 3: Mary’s husband is Milton

Task: Task: D’s nephew is A
Step 1: D’s brother is B
Step 2: B’s son is C
Step 3: C’s brother is A
Task: Francisco’s nephew is Clarence
Step 1: Francisco’s brother is Joshua
Step 2: Joshua’s son is Joseph
Step 3: Joseph’s brother is Clarence
Task: Melanie’s nephew is Charles
Step 1: Melanie’s husband is William
Step 2: William’s nephew is Kyle
Step 3: Kyle’s father is Charles
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Table 11: Showcase of results and failure cases analysis of CoT.

Right
Question: Nettie’s brother Paul took her to the fair when
she was little. Paul also brought his brother Samuel.
Shantel and husband Harold are trying to get custody of
Shantel’s granddaughter Nettie before she gets placed in
foster care. What is the relation between Samuel and Harold?
Answer: Harold’s wife is Shantel, Shantel’s granddaughter
is Nettie, Nettie’s brother is Paul, Paul’s brother is Samuel.
The relation of Samuel between Harold is grandson.

Question: Chris wants to throw a surprise party for his brother
Theodore. Chris’s brother Charles helps pick the decorations.
Frances combed her grandson Charles’s hair. She wanted him
to look good for his first day of school. What is the relation
between Theodore and Frances?
Answer: Frances’s grandson is Charles, Charles’s brother is
Chris, Chris’s brother is Theodore. The relation of Theodore
with Frances is grandson.

Question: Kevin went to the park with his sister, Heidi,
and his father, Wayne. The three of them had a wonderful
time there. What is the relation between Wayne and Heidi?
Answer: Heidi’s brother is Kevin, Kevin’s father
is Wayne. The relation of Wayne between Heidi is father.

Question: Harold was so excited to surprise his son, Louis,
with the tickets to the playoffs. Shantel enjoyed a
homemade dinner with her son Louis Tracy was making
dinner for her son, Kevin. Shantel, Kevin’s grandmother,
stopped by, so Shantel made a bit more so they all had
enough to eat. What is the relation between Harold and Tracy?
Answer: tracy’s mother is shantel, tracy’s father is harold.
the relation of harold and tracy is father.

Wrong
Question: Wilhelmina took her uncle Hugh to the grocery store.
Francisco and his brother Wesley were wrestling. Wilhelmina,
Francisco’s daughter, was cheering on the competition. What
is the relation between Hugh and Wesley?
Answer: Wesley’s brother is Francisco, Francisco’s daughter
is Wilhelmina, Wilhelmina’s uncle is Hugh. The relation of
Hugh between Wesley is brother.

Question: Constance went shoe shopping with her sister Ellen.
Elsie had a daughter named Constance. Elsie had picked her
daughter Margaret out the cutest new dress to wear on her birthday.
Charles and his sister Kathleen have been best friends ever
since childhood. Nadia and her father, James, went to the marina.
James’s daughter, Mabel, had purchased a boat, and they were
eager to see it. Mabel bought her mother, Ellen, a puppy
for her birthday. James hung his son Charles’s finger
paintings on the refrigerator. The paintings were right
next to the paintings of Nadia, Charles’s sister. Kathleen
was n’t old enough to make any paintings for her father, James.
What is the relation between Margaret and Charles?
Answer: charles’ mother is nancy, nancy’s daughter is elizabeth,
elizabeth’s husband is john, john’s wife is mary,
mary’s brother is george, george’s nephews are david,
david’s nephews are william, william’s nephews are robert.

Question: Nicholas bought his brother Wayne a present. It was to
congratulate him on becoming a father to his new son, Lorraine.
What is the relation between Nicholas and Lorraine?
Answer: Lorraine’s father is Wayne, Wayne’s brother is Nicholas.
The relation of Nicholas between Lorraine is uncle.

Question: William wanted to have a family cookout so he invited his
brother James. James wanted to invite his other brother Cesar.
Darryl’s mother, Patrice, waited impatiently for him at the diner.
Dan played basketball with his brother Eric. Darryl took his brother
Eric to the baseball game with Nora’s father Cesar. Cesar took
his son Eric to go get nachos during the game. Patrice fixed her
husband Cesar dinner and then they watched a movie they rented.
Cesar rushed to the hospital to find out that his wife and already given
birth to a boy and had named him Dan. Cesar was so excited to
surprise his son, Eric, with the tickets to the playoffs.
What is the relation between William and Nora?
Answer: nora has two brothers, one of them being william.
william is the only one who knows about nora’s pregnancy. he is
also the only one who knew about nora’s pregnancy.
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