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Abstract
Causal discovery and causal reasoning are classically treated as separate and consec-
utive tasks: one first infers the causal graph, Causal discovery and causal reasoning
are classically treated as separate and consecutive tasks: one first infers the causal
graph, and then uses it to estimate causal effects of interventions. However, such a
two-stage approach is uneconomical, especially in terms of actively collected inter-
ventional data, since the causal query of interest may not require a fully-specified
causal model. From a Bayesian perspective, it is natural to treat a causal query (e.g.,
the causal graph or some causal effect) as subject to posterior inference while other
unobserved quantities ought to be marginalized out. In this work, we propose Ac-
tive Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework
for integrated causal discovery and reasoning, which jointly infers a posterior over
causal models and queries of interest. ABCI sequentially designs experiments that
are maximally informative about the target causal query, collects the corresponding
interventional data, and updates the Bayesian beliefs to choose the next experiment.
Through simulations, we demonstrate that our approach is more data-efficient than
several baselines that only focus on learning the full causal graph. This allows us
to accurately learn downstream causal queries from fewer samples while providing
well-calibrated uncertainty estimates for the quantities of interest.

1 Introduction

Causal reasoning, that is, answering causal queries such as the effect of a particular intervention,
is a fundamental scientific quest [3, 28, 31, 39]. A rigorous treatment of this quest requires a
reference causal model, typically consisting at least of (i) a causal diagram, or directed acyclic graph
(DAG), capturing the qualitative causal structure between a system’s variables [45] and (ii) a joint
distribution that is Markovian w.r.t. this causal graph [62]. Other frameworks additionally model (iii)
the functional dependence of each variable on its causal parents in the graph [46, 70]. If the graph
is not known from domain expertise, causal discovery aims to infer it from data [38, 62]. However,
given only passively-collected observational data and no assumptions on the data-generating process,
causal discovery is limited to recovering the Markov equivalence class (MEC) of DAGs implying
the conditional independences present in the data [62]. Additional assumptions like linearity can
render the graph identifiable [29, 49, 59, 71] but are often hard to falsify, thus leading to risk of
misspecification. These shortcomings motivate learning from experimental (interventional) data,
which enables recovering the true causal structure [12, 13, 24]. Since obtaining interventional data is
costly in practice, we study the active learning setting, in which we sequentially design and perform
interventions that are most informative for the target causal query [1, 19, 24, 25, 40, 66].
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Figure 1: Overview of the Active Bayesian Causal Inference (ABCI) framework. At each time step t, we
use Bayesian experimental design based on our current beliefs to choose a maximally informative intervention at
to perform. We then collect a finite data sample from the interventional distribution induced by the environment,
which we assume to be described by an unknown structural causal model (SCM) M⋆ over a set of observable
variables X . Given the interventional data x1:t collected from the true SCM M⋆ and a prior distribution
over the model class of consideration, we infer the posterior over a target causal query Y = q(M) that can be
expressed as a function of the causal model. For example, we may be interested in the graph (causal discovery),
the presence of certain edges (partial causal discovery), the full SCM (causal model learning), a collection
of interventional distributions or treatment effects (causal reasoning), or any combination thereof.

Classically, causal discovery and reasoning are treated as separate, consecutive tasks that are studied
by different communities. Prior work on experimental design has thus focused either purely on
causal reasoning—that is, how to best design experimental studies if the causal graph is known?—or
purely on causal discovery, whenever the graph is unknown [27, 49]. In the present work, we
consider the more general setting in which we are interested in performing causal reasoning but
do not have access to a reference causal model a priori. In this case, causal discovery can be seen
as a means to an end rather than as the main objective. Focusing on actively learning the full causal
model to enable subsequent causal reasoning can thus be disadvantageous for two reasons. First,
wasting samples on learning the full causal graph is suboptimal if we are only interested in specific
aspects of the causal model. Second, causal discovery from small amounts of data entails significant
epistemic uncertainty—for example, incurred by low statistical test power or multiple highly-scoring
DAGs—which is not taken into account when selecting a single reference causal model [2, 16].

In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian framework
for integrated causal discovery and reasoning with experimental design. The basic approach is
to put a Bayesian prior over the causal model class of choice, and to cast the learning problem as
Bayesian inference over the model posterior. Given the unobserved causal model, we formalize
causal reasoning by introducing the target causal query, a function of the causal model that specifies
the set of causal quantities we are interested in. The model posterior together with the query function
induce a query posterior, which represents the result of our Bayesian learning procedure. It can
be used, e.g., in downstream decision tasks or to derive a MAP solution or suitable expectation. To
learn the query posterior, we follow the Bayesian optimal experimental design approach [8, 33] and
sequentially choose admissible interventions on the true causal model that are most informative about
our target query w.r.t. our current beliefs. Given the observed data, we then update our beliefs by
computing the posterior over causal models and queries and use them to design the next experiment.

2 Active Bayesian Causal Inference (ABCI) Framework

In this section, we first introduce the ABCI framework in generality and formalize its main concepts
and distributional components, which are illustrated in Fig. 1. In Appx. A, we then describe our partic-
ular instantiation of ABCI for the class of causally sufficient nonlinear additive Gaussian noise models.

Causal Model. To treat causality in a rigorous way, we first need to postulate a mathematically
well-defined causal model. Historically hard questions about causality can then be reduced to
epistemic questions, that is, what and how much is known about the causal model. A prominent
type of causal model is the structural causal model (SCM) [46]. From a Bayesian perspective, an
SCM can be viewed as a hierarchical data-generating process involving latent random variables.

Definition 1 (SCM). An SCMM over observed endogenous variables X = {X1, . . . , Xd} and
unobserved exogenous variables U = {U1, . . . , Ud} consists of structural equations, or mechanisms,

Xi := fi(Pai, Ui), for i ∈ {1, . . . , d}, (2.1)
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which assign the value of each Xi as a deterministic function fi of its direct causes, or causal parents,
Pai ⊆X \ {Xi} and Ui; and a joint distribution p(U) over the exogenous variables.

Associated with each SCM is a directed causal graph G with vertices X and edges Xj → Xi if
and only if Xj ∈ Pai, which we assume to be acyclic. Any acyclic SCM then induces a unique
observational distribution p(X |M) over the endogenous variables X , which is obtained as the
pushforward measure of p(U) through the causal mechanisms in Eq. (2.1).

Interventions. A crucial aspect of causal models such as SCMs is that they also model the effect of
interventions—external manipulations to one or more of the causal mechanisms in Eq. (2.1)—which,
in general, are denoted using Pearl’s do-operator [46] as do({Xi = f̃i(Pai, Ui)}i∈I) with I ⊆ [d]

and suitably chosen f̃i(·). An intervention leads to a new SCM, the so-called interventional SCM, in
which the relevant structural equations in Eq. (2.1) have been replaced by the new, manipulated ones.
The interventional SCM thus induces a new distribution over the observed variables, the so-called
interventional distribution, which is denoted by pdo(a)(X |M) with a denoting the (set of) interven-
tion(s) {Xi = f̃i(Pai, Ui)}i∈I . Causal effects, that is, expressions like E[Xj |do(Xi = 3)], can then
be derived from the corresponding interventional distribution via standard probabilistic inference.

Being Bayesian with Respect to Causal Models. The main epistemic challenge for causal reasoning
stems from the fact that the true causal modelM⋆ is not or not completely known. The canonical
response to such epistemic challenges is a Bayesian approach: place a prior p(M) over causal models,
collect data D from the true modelM⋆, and compute the posterior via Bayes rule:

p(M|D) = p(D |M) p(M)

p(D)
=

p(D |M) p(M)∫
p(D |M) p(M) dM

. (2.2)

A full Bayesian treatment overM is computationally delicate, to say the least. We require a way
to parameterise the class of modelsM while being able to perform posterior inference over this
model class. In this paper, we present a fully Bayesian approach for flexibly modelling nonlinear
relationships (Appx. A).

Bayesian Causal Inference. In the causal inference literature, the tasks of causal discovery and
causal reasoning are typically considered separate problems. The former aims to learn (parts of) the
causal modelM⋆, typically the causal graph G⋆, while the latter assumes that the relevant parts of
M⋆ are already known and aims to identify and estimate some query of interest, typically using only
observational data. This separation suggests a two-stage approach of first performing causal discovery
and then fixing the model for subsequent causal reasoning. From the perspective of uncertainty
quantification and active learning, however, this distinction is unnatural because intermediate,
unobserved quantities like the causal model do not contribute to the epistemic uncertainty in the final
quantities of interest. Instead, we define a causal query function q, which specifies a target causal
query Y = q(M) as a function of the causal modelM. This view thus subsumes and generalises
causal discovery and reasoning into a unified framework. For example, possible causal queries are:

Causal Discovery: Y = qCD(M) = G, that is, learning the full causal graph G;

Causal Model Learning: Y = qCML(M) =M, that is, learning the full SCMM;

Causal Reasoning: Y = qCR(M) = {Xdo(XI(j)=ψj)

j }j∈J , that is, learning a set of
interventional variables Xj induced byM under do(XI(j) = ψj).

Given a causal query, Bayesian inference naturally extends to our learning goal, the query posterior:

p(Y | D) =
∫
p(Y |M) p(M|D) dM = EM|D[ p(Y |M)] . (2.3)

Evidently, computing Eq. (2.3) constitutes a hard computational problem in general, as we need
to marginalise out the causal model. In Appx. A, we introduce a practical implementation for a
restricted causal model class, informed by this challenge.

Active Learning with Sequential Interventions. Rather than collect a large observational dataset, we
seek to leverage experimental data, which can help resolve some of the aforementioned identifiability
issues and facilitate learning our target causal query more quickly, even if the model is identifiable.
Since obtaining experimental data is costly in practice, we study the active learning setting in which
we sequentially design experiments in the form of interventions at. At each time step t, the outcome
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of this experiment at is a batch xt of Nt i.i.d. observations from the true interventional distribution:

xt = {xt,n}Nt
n=1, xt,n

i.i.d.∼ pdo(at)(X |M⋆) (2.4)

Crucially, we design the experiment at to be maximally informative about our target causal query Y .
In our Bayesian setting, this is naturally formulated as maximising the myopic information gain
from the next intervention, that is, the mutual information between Y and the outcomeXt [8, 33]:

maxat I(Y ;Xt |x1:t−1) (2.5)

whereXt follows the predictive interventional distribution of the Bayesian causal model ensemble
at time t− 1 under intervention at, which is given by

Xt ∼ pdo(at)(X |x1:t−1) ∝
∫
pdo(at)(X |M) p(M|x1:t−1) dM. (2.6)

By maximising Eq. (2.5), we collect experimental data and infer our target causal query Y in a highly
efficient, goal-directed manner.

3 Experiments

Setup. We evaluate ABCI by inferring the query posterior on synthetic ground-truth SCMs using
several different experiment selection strategies. Specifically, we design experiments w.r.t. UCD

(causal discovery), UCML (causal model learning), and UCR (causal reasoning); see Appx. A.2. We
compare against baselines which (i) only sample from the observational distribution (OBS) or (ii)
pick an intervention target j uniformly at random from [d] ∪ {∅} and set Xj = 0 (RAND FIXED, a
weak random baseline used in prior work) or draw Xj ∼ U(−7, 7) (RAND) if Xj ̸= ∅. All methods
follow our Bayesian GP-DiBS-ABCI approach from Appx. A. We sample ground truth SCMs over
random scale-free graphs [5] of size d = 20, with mechanisms and noise variances drawn from
our model prior in Eq. (A.4). In Appx. H, we report additional results for both scale-free and Erdős
Renyi random graphs over d = 10 resp. d = 20 variables. For specific prior choices and simulation
details, see Appx. E.

Metrics. As ABCI infers a posterior over the target query Y , a natural evaluation metric is
the Kullback-Leibler divergence (KLD) between the true query distribution and the inferred
query posterior, KL(p(Y |M⋆)|| p(Y |x1:t)). We report Query KLD, a KLD estimate for target
interventional distributions (qCR). As a proxy for the KLD of the SCM posterior (qCML), we report
the average KLD across all single node interventional distributions {pdo(Xi=ψ)(X)}di=1, with
ψ ∼ U(−7, 7) (Average I-KLD). We also report the expected structural Hamming distance [11],
ESHD = EG |x1:t [SHD(G,G⋆)], a commonly used causal discovery metric, and the area under
the precision recall curve (AUPRC). See Appx. G for further details.

Causal Discovery and SCM Learning (Fig. 2). In our first experiment, we find that all ABCI-based
methods are able to meaningfully learn from small amounts of data, which validates our Bayesian
approach. Moreover, performing targeted interventions using experimental design indeed improves
performance compared to uninformed experimentation (OBS, RAND FIXED, RAND). Notably, the
stronger random baseline (RAND), which also randomises over intervention values, performs well
in the considered setting. As expected by the theoretical grounding of the information gain utilities,
UCD identifies the true graph the fastest (as measured by ESHD), whereas UCML exhibits good scores
across all metrics. Further details are given in the caption of Fig. 2.

Learning Interventional Distributions (Fig. 3). In our second experiment, we investigate ABCI’s
causal reasoning capabilities by randomly sampling ground-truth SCMs as described above over
the fixed graph shown in Fig. 3 (right), which is not known to the methods. Our target query is the set
of interventional random variables, or “distributional treatment effects”, Xdo(X3=ψ)

5 for treatments
ψ ∼ U [2, 5]. The results show that our informed experiment selection strategies significantly
outperform the baselines at causal reasoning as measured by the Query KLD. In accordance with
the results from Fig. 2 and considering that, once we know the true SCM, we can compute any causal
quantity of interest, UCML seems to provide a reasonable experimental strategy in case the causal
query of interest is not known a priori. However, our results indicate that if we do know our query
of interest, then UCR provides a more efficient experiment design strategy for its estimation, even
when the treatment variable of interest is not directly intervenable. In this case, the task is indeed
more difficult, as highlighted by the larger Query KLD values across all considered methods.
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Figure 2: Causal Discovery and SCM Learning. Comparison of experimental design strategies for causal
discovery (UCD) and causal model learning (UCML) with random and observational baselines on simulated
ground truth models with 20 nodes. We initialise all methods with 50 observational samples, and then perform
experiments with a batch size of Nt = 5. Lines and shaded areas show means and 95% confidence intervals
(CIs) across 15 runs (5 randomly sampled ground-truth SCMs with 3 restarts per SCM). CIs for OBS and RAND

FIXED baselines are not shown to aid readability; see Fig. 6 in Appx. H for the full figure. (a) ESHD. Both
our objectives significantly outperform the observational and random baselines. (b) Average I-KLD. UCD

significantly outperforms the baselines, whereas UCML performs only marginally better than RAND. (c) AUPRC.
Both our strategies perform consistently better than the uninformed selection strategies.
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Figure 3: Learning Interventional Distributions. (left) Comparison of different methods w.r.t. learning a set
of interventional variables X5

do(X3=ψ) with ψ ∼ U [2, 5] on simulated ground truth models with fixed causal
graph (right). We initialise all methods with 5 observational samples, and then perform experiments with a
batch size of Nt = 3. Lines and shaded areas show means and 95% confidence intervals (CIs) across 30 runs
(10 randomly sampled ground truth SCMs with 3 restarts each). CIs for OBS and RAND FIXED baselines are
not shown to aid readability; see Figs. 9 and 10 in Appx. H for the full figure. (a) All nodes actionable. UCR

significantly outperforms all other methods as expected. UCML performs second best which, in conjunction with
the results from Fig. 2, suggests that UCML yields a solid base model for performing downstream causal inference
tasks. (b) X3 not actionable. In this setting, where we cannot directly intervene on the treatment variable
of interest, UCR clearly outperforms all other methods for ≥ 10 experiments.

4 Conclusion

We have introduced ABCI, an Active Bayesian Inference framework for causal queries. The main
conceptual advantages of the ABCI framework are that it is flexible and principled, providing a fresh
perspective on the classical divide between causal discovery and reasoning: sometimes, the main
objective may be to foster scientific understanding by uncovering the causal structure, while other
times, causal discovery may only be a means to an end to support causal reasoning.

In our experiments, we have made several assumptions to facilitate tractable inference and showcase
the ABCI framework on a relatively simple data-generating process. Relaxing these assumptions
are promising directions for future works, in particular to include heteroscedastic noise, unobserved
confounding, and cyclic relationships. Moreover, replacing Gaussian process models with deep
generative models is a natural way improve the expressivity of the model, potentially leading to
“fully-fledged” neuro-causal models.
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A Tractable ABCI for Nonlinear Additive Noise Models

Having described the general ABCI framework and its conceptual components, we now detail how to
instantiate ABCI for a flexible model class that still allows for tractable, approximate inference. This
requires us to specify (i) the class of causal models we consider in Eq. (2.1), (ii) the types of interven-
tions at we consider at each step and the corresponding interventional likelihood in Eq. (2.4), (iii) our
prior distribution p(M) over models, (iv) how to perform tractable inference of the model posterior
in Eq. (2.2), and finally (v) how to maximise the information gain in Eq. (2.5) for experimental design.

Model Class and Parametrisation. In the following, we consider nonlinear additive Gaussian noise
models [29] of the form

Xi := fi(Pai) + Ui, with Ui ∼ N (0, σ2
i ) for i ∈ {1, . . . , d}, (A.1)

where the fi’s are smooth, nonlinear functions and the Ui’s are assumed to be mutually independent.
The latter corresponds to the assumption of causal sufficiency, or no hidden confounding. Any
modelM in this model class can be parametrised as a tripleM = (G,f ,σ2), where G is a causal
DAG, f = (f1, . . . , fd) is a vector of functions defined over the parent sets implied by G, and
σ2 = (σ2

1 , . . . , σ
2
d) contains the Gaussian noise variances. Provided that the fi are nonlinear and

not constant in any of their arguments, the model is identifiable almost surely [29, 50].

Interventional Likelihood. We support the realistic setting where only a subset W ⊆ X of all
variables are actionable, that is, can be intervened upon.2 We consider hard interventions of the form
do(at) = do(XI = xI) that fix a subsetXI ⊆W to a constant xI . Due to causal sufficiency, the
interventional likelihood under such hard interventions at factorises over the causal graph G and
is given by the g-formula [52] or truncated factorisation [62]:

pdo(at)(X |G,f ,σ2) = I{XI = xI}
∏
j ̸∈I

p(Xj | fj(PaGj ), σ
2
j ). (A.2)

The last term in Eq. (A.2) is given by N (Xj | fj(PaGj ), σ
2
j ), due to the Gaussian noise assumption.

Let x1:t be the entire dataset, collected up to time t. The likelihood of x1:t is then given by

p(x1:t |G,f ,σ2) =

t∏
τ=1

pdo(aτ )(xτ |G,f ,σ2) =

t∏
τ=1

Nt∏
n=1

pdo(aτ )(xτ,n |G,f ,σ2). (A.3)

Structured Model Prior. To specify our prior, we distinguish between root nodes Xi, for which
Pai = ∅ and thus fi = const, and non-root nodes Xj . For a given causal graph G, we denote
the index set of root nodes by R(G) = {i ∈ [d] : PaGi = ∅} and that of non-root nodes by
NR(G) = [d] \R(G). We then place the following structured prior over SCMsM = (G,f ,σ2):

p(M) = p(G) p(f ,σ2 |G) = p(G)
∏

i∈R(G)

p(fi, σ
2
i |G)

∏
j∈NR(G)

p(fj |G)p(σ2
j |G) . (A.4)

Here, p(G) is a prior over graphs and p(f ,σ2 |G) is a prior over the functions and noise variances.
We factorise our prior conditional on G as in Eq. (A.4) not only to allow for a separate treatment
of root vs. non-root nodes, but also to share priors across similar graphs. Whenever PaG1

i = PaG2
i ,

we set p(fi, σ2
i |G1) = p(fi, σ

2
i |G2). As a consequence, the posteriors are also shared, which

substantially reduces the computational cost in practice (see Appx. F.2 for details). Our prior
also encodes the beliefs that {fi, σ2

i } ⊥⊥ {fi′ , σ2
i′} |G for i ̸= i′ ∈ [d] and that fj ⊥⊥ σ2

j |G for
j ∈ NR(G) which is motivated by the principle of independent causal mechanisms [49] and the
causal sufficiency assumption. Our specific choices for the different factors on the RHS of Eq. (A.4)
are guided by ensuring tractable inference and described in more detail below.

Model Posterior. Given collected data x1:t, we can update our beliefs and quantify our uncertainty
inM⋆ by inferring the posterior p(M|x1:t) over SCMsM = (G,f ,σ2), which can be written as3

2In principle, the set of actionable variables might even change over time, in which case they are denoted Wt.
3To avoid further complicating the notation, we write all posteriors and likelihoods in terms of the full

data x1:t. However, only observations of Xi and Xj |PaGj matter for i ∈ R(G) and j ∈ NR(G).
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p(M|x1:t) = p(G |x1:t)
∏

i∈R(G)

p(fi, σ
2
i |x1:t, G)

∏
j∈NR(G)

p(fj , σ
2
j |x1:t, G) . (A.5)

For root nodes i ∈ R(G), posterior inference given the graph is straightforward. We have
fi = const, so fi can be viewed as the mean of Ui. We thus place conjugate normal-inverse-gamma
N-Γ−1(µi, λi, α

R
i , β

R
i ) priors on p(fi, σ2

i |G), which allows us to analytically compute the root node
posteriors p(fi, σ2

i |x1:t, G) in Eq. (A.5) given the hyperparameters (µ,λ,αR,βR) [41].

The posteriors over graphs and non-root nodes j ∈ NR(G) are given by

p(G |x1:t) =
p(x1:t |G) p(G)

p(x1:t)
, p(fj , σ

2
j |x1:t, G) =

p(x1:t |G, fj , σ2
j ) p(fj , σ

2
j |G)

p(x1:t |G)
. (A.6)

Computing these posteriors is more involved and discussed in the following.

A.1 Addressing Challenges for Posterior Inference with GPs and DiBS

The posterior distributions in Eq. (A.6) are intractable to compute in general due to the marginal
likelihood and evidence terms p(x1:t |G) and p(x1:t), respectively. In the following, we will address
these challenges by means of appropriate prior choices and approximations.

Challenge 1: Marginalising out the Functions. The marginal likelihood p(x1:t |G) reads

p(x1:t |G) =
∫
p(x1:t |G, fj , σ2

j ) p(fj |G) p(σ2
j |G) dfj dσ2

j (A.7)

and requires evaluating integrals over the function domain. We use Gaussian processes (GPs) [69] as
an elegant way to solve this problem, as GPs flexibly model nonlinear functions while offering conve-
nient analytical properties. Specifically, we place a GP(0, kGj (·, ·)) prior on p(fj |G), where kGj (·, ·)
is a covariance function over the parents of Xj with kernel parameters κj . As is common, we refer to
(κj , σ

2
j ) as the GP-hyperparameters. In addition, we place Gamma(ασj , β

σ
j ) and Gamma (ακj ,β

κ
j )

priors on p(σ2
i |G) and p(κi |G) and collect their parameters in (αGP,βGP).

G Z

fi σ2
i

xτ,n

(µ,λ,αR,βR)

do(aτ )

fj σ2
j

κj

(αGP,βGP)

NR(G)

Nτ

R(G)

t

Figure 4: Graphical model of GP-DiBS-ABCI.

The graphical model underlying all variables and hyper-
parameters is shown in Fig. 4. For our model class, GPs
provide closed-form expressions for the GP-marginal
likelihood p(x1:t |G, σ2

j ,κj), as well as for the GP
posteriors p(fj |x1:t, G, σ2

j ,κj) and the predictive pos-
teriors over observations p(X |x1:t, G,σ2,κ) [69],
see Appx. C for details.

Challenge 2: Marginalising out the GP-
Hyperparameters. While GPs allow for exact
posterior inference conditional on a fixed in-
stance of (σ2

j ,κj), evaluating expressions such
as p(fj |x1:t, G) requires marginalising out these
GP-hyperparameters from the GP-posterior. In general,
this is intractable to do exactly, as there is no analytical
expression for p(σ2

j ,κj |x1:t, G). To tackle this, we
approximate such terms using a maximum a posteriori
(MAP) point estimate (σ̂2

j , κ̂j) obtained by performing gradient ascent on the unnormalised log
posterior

∇ log p(σ2
j ,κj |x1:t, G) = ∇ log p(x1:t |G, σ2

j ,κj) +∇ log p(σ2
j ,κj |G) (A.8)

according to a predefined update schedule, see Alg. 1. More specifically,

p(fj |x1:t, G) =
∫
p(fj |x1:t, G, σ2

j ,κj)p(σ
2
j , κj |x1:t, G) dσ2

j dκj ≈ p(fj |x1:t, G, σ̂2
j , κ̂j)

Challenge 3: Marginalising out the Causal Graph. The evidence p(x1:t) is given by

p(x1:t) =
∑
G

p(x1:t |G) p(G) (A.9)
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Algorithm 1: GP-DiBS-ABCI for nonlinear additive Gaussian noise models

Input: # of experiments T , batch sizes {Nt}Tt=1, # of latent particles M , # of MC samples K,
particle resampling schedule {rt}Tt=1, hyperparameter update schedule {st}Tt=1

Output: Posterior over target causal query p(Y |x1:T )

z0 ∼ p(Z) ▷sample initial particles; Eq. (E.12)
for t = 1 to T do

at ← argmaxa=(I,xI) U(a,x1:t−1) ▷design experiment; Eq. (A.11)
xt ← {x(t,n) ∼ pdo(at)(X |M⋆)}Nt

n=1 ▷perform experiment; Eq. (2.4)
zt ← zt−1

if rt then
zt ← resample_particles (zt) ▷see Appx.F

end
repeat

G← {G(k,m) ∼ p(G | ztm)}Kk=1
M
m=1 ▷sample graphs; Eq. (E.11)

κκκ, σσσ2 ← estimate_hyperparameters(x1:st ,G) ▷see Eq. (A.8)
zt ← svgd_step(zt,x1:t,G,κκκ,σσσ2) ▷update latent particles

until svgd_convergence ▷zt now approximate p(Z |x1:t)
end

and involves a summation over all possible DAGs G. This becomes intractable for d ≥ 5 variables
as the number of DAGs grows super-exponentially in the number of variables [53]. To address this
challenge, we employ the recently proposed DiBS framework [35]. By introducing a continuous prior
p(Z) that models G via p(G |Z) and simultaneously enforces acyclicity of G, Lorch et al. [35] show
that we can efficiently infer the discrete posterior p(G |x1:t) via p(Z |x1:t) as

EG |x1:t [ϕ(G)] = EZ |x1:t

[
EG |Z [ p(x

1:t |G)ϕ(G)]
EG |Z [ p(x1:t |G)]

]
(A.10)

where ϕ is some function of the graph. Since p(Z |x1:t) is a continuous density with tractable gradient
estimators, we can leverage efficient variational inference methods such as Stein Variational Gradient
Descent (SVGD) for approximate inference [34]. Additional details on DiBS are given in Appx. E.

A.2 Approximate Bayesian Experimental Design with Bayesian Optimisation

Following § 2, our goal is to perform experiments at that are maximally informative about our target
query Y = q(M) by maximising the information gain from Eq. (2.5) given our hitherto collected data
D := x1:t−1. In Appx. D, we show that this is equivalent to maximising the following utility function:

U(a) = H(Xt | D) + EM|D
[
EXt,Y |M

[
logEM′ | D

[
p(Xt, Y |M′)

]]]
, (A.11)

where

H(Xt | D) = EM|D
[
EXt |M

[
logEM′ | D

[
p(Xt |M′)

]]]
denotes the differential entropy of the experiment outcome which depends on a and is distributed
as in Eq. (2.6). This surrogate objective can be estimated using a nested Monte Carlo estimator
as long as we can sample from and compute p(Y |M), or alternatively, p(Y |Xt, G,D). Refer
to Appx. D for further details. For example, for qCR(M) = X

do(Xi=ψ)
j with ψ ∼ p(ψ) a distribution

over intervention values, we obtain:
UCR(a) = EG | D

[
EXt |G,D

[
− logEG′ | D

[
p(Xt | D, G′)

]
(A.12)

+ Eψ
[
Edo(Xi=ψ)
Xj |Xt,G,D

[
logEG′ | D

[
p(Xt | D, G) pdo(Xi=ψ)(Xj |Xt, G,D)

]]]]]
.

Importantly, for specific instances of the query function q(·) discussed in § 2, we can derive simpler
utility functions than Eq. (A.11). For example, for qCD(M) = G and qCML(M) =M, we arrive at

UCD(a) = EG | D
[
EXt |G,D

[
log p(Xt | D, G)− logEG′ | D

[
p(Xt | D, G′)

]]]
, (A.13)

UCML(a) = EM|D
[
EXt |M

[
log p(Xt |M)− logEG′ | D

[
p(Xt | D, G′)

]]]
, (A.14)
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where the entropy EXt |M [log p(Xt |M)] can again be efficiently computed given our modelling
choices. For brevity, we defer derivations and estimation details to Appxs. D and E.

Finding the optimal experiment a∗t = (I∗,x∗
I) requires jointly optimising the utility function cor-

responding to our query with respect to (i) the set of intervention targets I and (ii) the corresponding
intervention values xI . This lends itself naturally to a nested, bi-level optimisation scheme [67]:

I∗ ∈ argmaxI U(I,x∗
I) , where ∀I : x∗

I ∈ argmaxxI
U(I,xI) , (A.15)

In the above, we first estimate the optimal intervention values for all candidate intervention targets I
and then select the intervention target that yields the highest utility. The intervention target I may
contain multiple variables, which would yield a combinatorial problem. For simplicity, we consider
only single-node interventions, |I| = 1. To find x∗

I , we employ Bayesian optimisation [36, 37, 60]
to efficiently estimate the most informative intervention value x∗

I , see Appx. E.

14



B Further Discussion of Related Work

Causal discovery and reasoning have been widely studied in machine learning and statistics [20, 27, 49,
68]. Given an already collected set of observations, there is a large body of literature on learning causal
structure, both in the form of a point estimate [7, 23, 48, 59, 62] and a Bayesian posterior [2, 10, 16, 26,
35]. Given a known causal graph, previous work studies how to estimate treatment effects or counter-
factuals [46, 55, 57]. When interventional data is yet to be collected, existing work primarily focuses
on the specific task of structure learning—without its downstream use. The concept of (Bayesian)
active causal discovery was first considered in discrete [40, 66] or linear [9, 43] models with closed-
form marginal likelihoods and later extended to nonlinear causal mechanisms [65, 67], multi-target
interventions [64], and general models by using hypothesis testing [17] or heuristics [56]. Graph
theoretic works give insights on the interventions required for full identifiability [12, 13, 24, 30, 58].

Beyond learning the complete causal graph, few prior works have studied active causal inference.
Concurrent work of Tigas et al. [65] considers experimental design for learning a full SCM
parameterised by neural networks. There are significant differences to our approach. In particular,
our framework (§ 2) is not limited to the information gain over the full model and provides a
fully Bayesian treatment of the functions and their epistemic uncertainty (Appx. A). Agrawal et al.
[1] consider actively learning a function of the causal graph under budget constraints, though not
of the causal mechanisms and only for linear Gaussian models. Conversely, Rubenstein et al. [54]
perform experimental design for learning the causal mechanisms after the causal graph has been
inferred. Thus, while prior work considers causal discovery and reasoning as separate tasks, ABCI
forms an integrated Bayesian approach for learning causal queries through interventions, reducing
to previously studied settings in special cases. We further discuss related work in Appx. B.
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C Background on Gaussian processes

We use Gaussian Processes (GPs) to model mechanisms of non-root nodes Xi, i.e., we place a
GP prior on p(fi |G). In the following, we give some background on GPs and how to compute
probabilistic quantities thereof relevant to this work. For further information on GPs we refer the
reader to Williams and Rasmussen [69].

A GP(mi(·), kGi (·, ·)) is a collection of random variables, any finite number of which have a joint
Gaussian distribution, and is fully determined by its mean function mi(·) and covariance function (or
kernel) kGi (·, ·), where

m(x) = E[f(x)], and k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (C.1)

In our experiments, we choose the mean function mi(x) ≡ 0 to be zero and a rational quadratic
kernel

kRQ(x,x
′) = κoi ·

(
1 +

1

2α
(x− x′)⊤ κli (x− x′)

)−α
(C.2)

as our covariance function. Here, α denotes a weighting parameter, κoi denotes an output scale
parameter and κli denotes a length scale parameter. For the weighting parameter, we use a default
value of α = log 2 ≈ 0.693. For κli and κoi we choose priors according to Appx. E.4. In Section A.1
we summarise both parameters as κi = (κoi , κ

l
i).

In this work, we consider Gaussian additive noise models (see Eq. (A.1)). Hence, for a given non-root
node Xi in some graph G, we have

p(Xi |paGi , fi, σ
2
i , G) = N (Xi | fi(paGi ), σ

2
i ) (C.3)

where paGi denotes the parents of Xi in G. For some batch of collected data x = {xn}Nn=1, let
xi = (x1i , . . . x

N
i )T , paGi = (paG,1i , . . . ,paG,Ni ), and K the Gram matrix with entries Km,n =

kRQ(paG,mi ,paG,ni ). Then, we can compute the prior marginal log-likelihood, which is needed to
compute p(x1:t |G), in closed form as

log p(xi |paGi , σ
2
i , G) = logEfi |G

[
p(xi |paGi , fi, σ

2
i , G)

]
(C.4)

= −1

2
xTi (K + σ2I)−1xi −

1

2
log |K + σ2I| − N

2
log 2π. (C.5)

To predict the function values fi(p̃aGi ) at unseen test locations p̃aGi = (p̃aG,1i , . . . , p̃aG,Ñi )

given previously observed data x, let K† be the (Ñ × N) covariance matrix with entries
K†
m,n = kRQ(p̃aG,mi ,paG,ni ) and K̃ be the (Ñ × Ñ) covariance matrix with entries K̃m,n =

kRQ(p̃aG,mi , p̃aG,ni ). Then, the predictive posterior is multivariate Gaussian

p(fi(p̃aGi ) | p̃aGi ,x, σ
2
i , G) = N (µf ,Σf ) (C.6)

with mean
µf =K†[K + σ2

i I
]−1

xi (C.7)
and covariance

Σf = K̃ −K†[K + σ2
i I

]−1
K†. (C.8)

Finally, the marginal posterior over observations X̃i, which is needed to sample and evaluate candidate
experiments in the experimental design process, is given by

p(X̃i | p̃aGi ,x, σ
2
i , G) = N (µXi

,ΣXi
) (C.9)

with mean
µXi

= µf (C.10)
and covariance

ΣXi
= Σf + σ2

i I. (C.11)
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D Derivation of the Information Gain Utility Functions

In the following, we provide the derivations for the expressions presented in Section A.2.

D.1 Information Gain for General Queries

We show that
argmax

at

I(Y ;Xt |x1:t−1) = argmax
at

U(at) (D.1)

for U(at) given in Eq. (A.11).

Proof. We write the mutual information in the following form

I(Y ;Xt |x1:t−1) = H(Y |x1:t−1) +H(Xt |x1:t−1)−H(Y, Xt |x1:t−1). (D.2)

In the above, we expand the joint entropy of experiment outcome and query as

H(Y, Xt |x1:t−1) = −EY,Xt |x1:t−1

[
log p(Y, Xt |x1:t−1)

]
(D.3)

= −EM|x1:t−1

[
EY,Xt |M

[
log p(Y, Xt |x1:t−1)

]]
(D.4)

= −EM|x1:t−1

[
EY,Xt |M

[
logEM′ |x1:t−1

[
p(Y |M′) · p(Xt |M′)

]]]
(D.5)

for any query such that query and experiment outcome are conditionally independent given an SCM.
This holds true, e.g., whenever Y is a deterministic function ofM such as Y = qCD(M) = G.

The marginal entropy of the experiment outcome given previously observed data is

H(Xt |x1:t−1) = −EXt |x1:t−1

[
log p(Xt |x1:t−1)

]
(D.6)

= −EM|x1:t−1

[
EXt |M

[
log p(Xt |x1:t−1)

]]
(D.7)

= −EM|x1:t−1

[
EXt |M

[
logEM′ |x1:t−1

[
p(Xt |M′)

]]]
(D.8)

= −EM|x1:t−1

[
EXt |M

[
logEf ′,σ2′ ,G′ |x1:t−1

[
p(Xt |f ′,σ2′ , G′)

]]]
(D.9)

= −EM|x1:t−1

[
EXt |M

[
logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(D.10)

= −Ef ,σ2,G |x1:t−1

[
EXt | f ,σ2,G

[
logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(D.11)

= −EG |x1:t−1

[
EXt |G,x1:t−1

[
logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(D.12)

Finally, since the query posterior entropyH(Y |x1:t−1) does not depend on the candidate experiment
at, we obtain

argmax
at

I(Y ;Xt |x1:t−1)

= argmax
at

H(Y |x1:t−1) +H(Xt |x1:t−1)−H(Y, Xt |x1:t−1)

= argmax
at

H(Xt |x1:t−1)−H(Y, Xt |x1:t−1) (D.13)

which, together with Eqs. (D.5) and (D.8), completes the proof.

D.2 Derivation of the Causal Discovery Utility Function

To derive UCD(a), we note that Y = qCD(M) = G, and hence the joint entropy of experiment
outcome and query in Eq. (D.3) becomes

H(G, Xt |x1:t−1) = −EG,Xt |x1:t−1

[
log p(G, Xt |x1:t−1)

]
(D.14)

= −EG,Xt |x1:t−1

[
log p(Xt |G, x1:t−1) + log p(G |x1:t−1)

]
(D.15)

= −EG,Xt |x1:t−1

[
log p(Xt |G, x1:t−1)

]
+H(G |x1:t−1) (D.16)

= −EG |x1:t−1

[
EXt |G,x1:t−1

[
log p(Xt |G, x1:t−1)

]]
+H(G |x1:t−1).

(D.17)
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Substituting this into Eq. (D.2) yields

I(G;Xt |x1:t−1) (D.18)

= H(Xt |x1:t−1) + EG |x1:t−1

[
EXt |G,x1:t−1

[
log p(Xt |G, x1:t−1)

]]
. (D.19)

By Eq. (D.12), we have

= EG |x1:t−1

[
EXt |G,x1:t−1

[
log p(Xt |G, x1:t−1)− logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(D.20)

which recovers the utility function UCD(a) from Eq. (A.13).

D.3 Derivation of the Causal Model Learning Utility Function

To derive UCML(a) given Y = qCML(M) =M, the joint entropy of experiment outcome and query
in Eq. (D.3) are given by

H(M, Xt |x1:t−1) = −EM,Xt |x1:t−1

[
log p(M, Xt |x1:t−1)

]
(D.21)

= −EM,Xt |x1:t−1

[
log p(Xt |M,x1:t−1) + log p(M|x1:t−1)

]
(D.22)

= −EM,Xt |x1:t−1

[
log p(Xt |M)

]
+H(M|x1:t−1) (D.23)

= −EM|x1:t−1

[
EXt |M

[
log p(Xt |M)

]]
+H(M|x1:t−1). (D.24)

As previously, substituting this into Eq. (D.2) yields

I(G;Xt |x1:t−1) = H(Xt |x1:t−1) + EM|x1:t−1

[
EXt |M

[
log p(Xt |M, )

]]
(D.25)

and by Eq. (D.10), we have

= EM|x1:t−1

[
EXt |M

[
log p(Xt |M)− logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(D.26)

which recovers the utility UCML(a) from Eq. (A.14).

For our concrete modeling choices we can further simplify this utility. Let AncMi and PaM
i denote

the ancestor and parent sets of node Xi inM. Then,

EM|x1:t−1

[
EXt |M

[
log p(Xt |M)

]]
(D.27)

= EM|x1:t−1

EXt |M

log ∏
i ̸∈It

pdo(at)(Xt
i |paMi ,M)

 (D.28)

= EM|x1:t−1

EXt |M

∑
i ̸∈It

log pdo(at)(Xt
i |paMi ,M)

 (D.29)

= EM|x1:t−1

∑
i ̸∈It

EXt |M

[
log pdo(at)(Xt

i |paMi ,M)
] (D.30)

= EM|x1:t−1

∑
i ̸∈It

EAncMi | do(at),M

[
EXt

i | paMi ,do(at),M

[
log pdo(at)(Xt

i |paM
i ,M)

]] .
(D.31)

Since our root nodes and GPs assume an additive Gaussian noise model, the innermost expectation
amounts to the negative entropy the Gaussian noise variable, i.e.,

EXt
i | paMi ,do(at),M

[
log pdo(at)(Xt

i |paMi ,M)
]
= −Nt

2
log(2πσ2

i e). (D.32)
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As we further assume a homoscedastic noise model for our GPs, Eq. (D.31) reduces to

EM|x1:t−1

∑
i ̸∈It

−Nt
2

log(2πσ2
i e)

 (D.33)

= −Ef ,σ2,G |x1:t−1

∑
i ̸∈It

Nt
2

log(2πσ2
i e)

 (D.34)

= −EG |x1:t−1

Eσ2 |G,x1:t−1

∑
i̸∈It

Nt
2

log(2πσ2
i e)

 (D.35)

= −EG |x1:t−1

∑
i ̸∈It

Eσ2
i |G,x1:t−1

[
Nt
2

log(2πσ2
i e)

] , (D.36)

which can be approximated by nested Monte Carlo estimation. For non-root nodes we approximate
the inner expectation with a single point estimate (cf. Section A.1). For root nodes we can compute
the inner expectation in closed form as

Eσ2
i |G,x1:t−1

[
Nt
2

log(2πσ2
i e)

]
=
Nt
2

(
log(2πe)− ψ(αti) + log βti

)
(D.37)

where αti, β
t
i are the parameters of the inverse-gamma noise posterior σ2

i ∼ Γ−1(σ2
i |αti, βti )

(see Appx. E.3) and ψ(·) is the digamma function.

Proof (adapted from [61]). We need to show that

Eσ2

[
log(σ2)

]
= −ψ(α) + log β (D.38)

where the noise variance σ2 follows an inverse-gamma density

σ2 ∼ Γ−1(σ2 |α, β) = βα

Γ(α)
· (σ2)

−α−1 · e−
β

σ2 . (D.39)

By substituting y = log σ2 we get

y ∼ p(y |α, β) = βα

Γ(α)
· e−αy · e−βe

−y

. (D.40)

Now note that ∫ ∞

−∞
p(y |α, β)dy = 1 (D.41)

and hence

Γ(α)

βα
=

∫ ∞

−∞
e−αy · e−βe

−y

dy. (D.42)

By differentiating the latter integrand w.r.t. α we get

d

dα

(
e−αy · e−βe

−y
)
= (−y)e−αy · e−βe

−y

= (−y) · p(y |α, β) · Γ(α)
βα

. (D.43)
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Bringing the parts together we obtain

Eσ2

[
log(σ2)

]
= Ey [y] (D.44)

=

∫ ∞

−∞
y · p(y |α, β)dy (D.45)

Eq. (D.43)
= − βα

Γ(α)

∫ ∞

−∞

d

dα

(
e−αy · e−βe

−y
)
dy (D.46)

= − βα

Γ(α)

d

dα

(∫ ∞

−∞
e−αy · e−βe

−y

dy

)
(D.47)

Eq. (D.42)
= − βα

Γ(α)

d

dα

(
Γ(α)

βα

)
(D.48)

= − βα

Γ(α)

(
β−α · d

dα
Γ(α)− Γ(α) · β−α · log β

)
(D.49)

= − ψ(α) + log β, (D.50)

which completes the proof.

In summary, in our instance of GP-DIBS-ABCI we estimate the causal model learning utility as

UCML(at) = −EG |x1:t−1

[ ∑
i∈R(G)\It

Nt
2

(
log(2πe)− ψ(αti) + log βti

)
+

∑
i∈NR(G)\It

Eσ2
i |G,x1:t−1

[
Nt
2

log(2πσ2
i e)

]
+

EXt |G,x1:t−1

[
logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(D.51)

D.4 Derivation of the Causal Reasoning Utility Function

We derive the utility function UCR(a) in Eq. (A.12) for the query Y = X
do(Xi=ψ)
j with ψ ∼ p(ψ) a

distribution over intervention values. Starting with the joint entropy in Eq. (D.3) we marginalise over
graphs (instead of SCMs) to exploit that we can sample from and evaluate p(X |G,x1:t−1) in closed
form by using GPs:

−H(Y, Xt |x1:t−1)

= EY,Xt |x1:t−1

[
log p(Y,Xt |x1:t−1)

]
(D.52)

= EG |x1:t−1

[
EY,Xt |G,x1:t−1

[
logEG′ |x1:t−1

[
p(Y,Xt |G′,x1:t−1)

]]]
(D.53)

= EG |x1:t−1

[
EXt |G,x1:t−1

[
EY |Xt,G,x1:t−1

[
logEG′ |x1:t−1

[
p(Y |Xt, G′,x1:t−1) · p(Xt |G′,x1:t−1)

]]]]
(D.54)

To estimate EY |Xt,G,x1:t−1 [·] we first sample intervention values ψ ∼ p(ψ) and then sample from the
respective interventional densities pdo(Xi=ψ)(Xj |Xt, G,x1:t−1) induced by candidate SCMs with
graph G. Thus, the expectation becomes Eψ

[
Edo(Xi=ψ)
Xj |Xt,G,x1:t−1 [·]

]
. To evaluate p(Y |Xt, G′,x1:t−1)

we estimate pdo(Xi=ψ)(Xj |Xt, G′,x1:t−1) as described in Appx. E.1. The joint entropy therefore
becomes

−H(Y, Xt |x1:t−1) =EG |x1:t−1

[
EXt |G,x1:t−1

[
Eψ

[
Edo(Xi=ψ)
Xj |Xt,G,x1:t−1

[
(D.55)

logEG′ |x1:t−1

[
pdo(Xi=ψ)(Xj |Xt, G′,x1:t−1) · p(Xt |G′,x1:t−1)

]]]]]
By substituting Eqs. (D.13) and (E.1) into Eq. (D.12) we obtain the causal reasoning utility in
Eq. (A.12).
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E Approximate Inference and Experimental Details

In this section, we provide details about our approximate inference and estimation procedures,
including the estimation of the marginal interventional likelihoods in Section E.1 and prior choices in
Sections E.2 — E.4. We also provide details on DiBS for approximate graph posterior inference in
Section E.5, the estimation of the information gain utilities in Section E.6, and our use of Bayesian
Optimisation for experimental design in Section E.7.

E.1 Estimating Posterior Marginal Interventional Likelihoods

In the following, we show how we estimate (posterior) marginal interventional likelihoods
pdo(xj)(xi |x1:t). Let AncGi and PaGi denote the ancestor and parent sets of node Xi in G. Then, the
marginal interventional likelihood is given by

pdo(xj)(xi |x1:t)

= EM|x1:t

[
pdo(xj)(xi |M)

]
(E.1)

= Ef ,σ2,G |x1:t

[
pdo(xj)(xi |f ,σ2, G)

]
(E.2)

= Ef ,σ2,G |x1:t

[
EAncGi | do(xj),f ,σ2,G

[
pdo(xj)(xi | ancGi ,f ,σ

2, G)
]]
. (E.3)

Given that Xi is independent of it’s non-descendants given its parents, we obtain

= Ef ,σ2,G |x1:t

[
EAncGi | do(xj),f ,σ2,G

[
pdo(xj)(xi |paGi , fi, σ

2
i , G)

]]
(E.4)

= EG |x1:t

[
Ef ,σ2 |G,x1:t

[
EAncGi | do(xj),f ,σ2,G

[
pdo(xj)(xi |paGi , fi, σ

2
i , G)

]]]
. (E.5)

Given that p(f ,σ2 |G,x1:t) factorises and AncGi are independent of mechanisms and noise variances
f ,σ2 of the non-ancestors of Xi, we have

= EG |x1:t

[
EfAncG

i
,σ2

AncG
i

|G,x1:t

[
EAncGi | do(xj),fAncG

i
,σ2

AncG
i

,G

[
Efi,σ2

i |G,x1:t

[
pdo(xj)(xi |paGi , fi, σ

2
i , G)

] ]]]
. (E.6)

Finally, marginalising out the functions and noise variances, we obtain

= EG |x1:t

[
EfAncG

i
,σ2

AncG
i

|G,x1:t

[
EAncGi | do(xj),fAncG

i
,σ2

AncG
i

,G

[
pdo(xj)(xi |paGi , G)

]]]
(E.7)

= EG |x1:t

[
EAncGi | do(xj),G

[
pdo(xj)(xi |paGi , G)

]]
(E.8)

= EG |x1:t

[
EAncGi | do(xj),G

[
p(xi |paGi , G)

∣∣∣
Xj=xj

]]
. (E.9)

We use Monte Carlo estimation to approximate the outer expectation of this quantity according
to Eq. (A.10). To approximate the inner expectation by performing ancestral sampling from the
interventional density pdo(xj)(X |G), where we use 50 samples when estimating the UCR utility in
Equation Eq. (A.12) and 200 samples when estimating the metrics described in Appx. G.

E.2 Sampling Ground Truth Graphs

When generating ground truth SCMs for evaluation, we sample causal graphs according to two random
graph models. First, we sample scale-free graphs using the preferential attachment process presented
by Barabási and Albert [5]. We use the networkx.generators.barabasi_albert_graph imple-
mentation provided in the NetworkX [22] Python package and interpret the returned, undirected graph
as a DAG by only considering the upper-triangular part of its adjacency matrix. Before permuting the
node labels, we generate graphs with in-degree 2 for nodes {Xi}di=3 whereas X1 and X2 are always
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root nodes. In addition, we consider Erdös-Renyi random graphs [15], where edges are sampled
independently with probability p = 4

d−1 . After sampling edges, we choose a random ordering and
discard any edges that disobey this ordering to obtain a DAG. Our choice of p yields an expected
degree of 2. Unlike Lorch et al. [35], we do not provide our model with any kind of prior information
on the graph structure.

E.3 Normal-Inverse-Gamma Prior for Root Nodes

We use a conjugate normal-inverse-gamma (N-Γ−1) prior

p(fi, σ
2
i |G) = N-Γ−1(µi, λi, α

R
i , β

R
i ) (E.10)

as the joint prior over functions and noise parameters for root nodes in G (see Section A and Fig. 4).
In our experiments, we use µi = 0, λi = 0.1, αRi = 50 and βRi = 25. When generating ground
truth SCMs, we draw one sample for (f⋆i , σ

2,⋆
i ) from this prior for all i and leave it fixed thereafter.

Closed-form expressions for the (posterior) marginal likelihood can be found, e.g., in [41].

E.4 Gamma Priors for GP Hyperparameters of Non-Root Nodes

We model non-root node mechanisms with GPs (see Section A.1), where each GP has a set of
hyperparameters (κi, σ2

i ) where κi = (κli, κ
o
i ) includes a length scale and output scale parameter,

respectively, and where σ2
i denotes the variance of the Gaussian noise variable Ui. In our experiments,

we use p(σ2
i |G) = Gamma(α = 50, β = 500), p(κoi |G) = Gamma(α = 100, β = 10) and

p(κli |G) = Gamma(α = 30 · |PaGi |, β = 30), where |PaGi | denotes the size of the parent set of Xi

in G.

E.5 DiBS for Approximate Posterior Graph Inference

DiBS [35] introduces a probabilistic latent space representation for DAGs to allow for efficient
posterior inference in continuous space. Specifically, given some latent particle z ∈ Rd×d×2 we can
define an edge-wise generative model

p(G | z) =
d∏
i=1

d∏
j=1
j ̸=i

p(Gi,j | z) (E.11)

where Gi,j ∈ {0, 1} indicates the absence/presence of an edge from Xi to Xj in G, and a prior
distribution

p(Z) ∝ exp(−β EG |Z [h(G)])
∏
i,j,k

N (zi,j,k | 0, 1) (E.12)

where h(G) is a scoring function quantifying the “degree of cyclicity” of G. β is a temperature
parameter weighting the influence of the expected cyclicity in the prior. Lorch et al. [35] propose to use
Stein Variational Gradient Descent [34] for approximate inference of p(Z |x1:t). SVGD maintains a
fixed set of particles z = {zm}Mm=1 and updates them using the posterior score∇ log p(z |x1:t) =
∇ log p(z)+∇ log p(x1:t | z). In our experiments, we use K = 5 latent particles. For the estimation
of expectations as in Eq. (A.10), we use K = 40 MC graph samples unless otherwise stated, hence, a
total of M ·K = 200 graphs, and we use the DiBS+ particle weighting. In contrast to the original
DiBS version, we do not use the annealing parameter α to force the mass of p(G|z) onto a single
graph during training. For further details on the method and its implementation, we refer to the
original publication [35] and the provided code.

E.6 Estimation of the Information Gain Utility Functions

When estimating the information gain utilities (see Appxs. A.2 and D), we keep the set of Monte Carlo
samples from the SCM posterior p(M|x1:t) fixed for all evaluations of the chosen utility during a
given experiment design phase at time t, i.e., during the optimisation for all candidate intervention
sets and intervention targets. In our experiments, for the UCD and UCML utilities we sample 5 and
30 graphs to approximate the outer and inner expectations w.r.t. the posterior graphs, respectively.
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We sample 100 hypothetical experiment outcomes with given batch size from p(Xt |G,x1:t) to
approximate the expectation EXt |G,x1:t [·].
For the UCR utility we sample 3 and 9 graphs to approximate the outer and inner expectations w.r.t.
the posterior graphs, respectively. We sample 50 hypothetical experiment outcomes with given batch
size from p(Xt |G,x1:t) to approximate expectations of the form EXt |G,x1:t [·]. To approximate
the expectations Eψ

[
Edo(Xi=ψ)
Xj |Xt,G,D[·]

]
we sample 5 intervention values from p(ψ) and draw 3 samples

from pdo(Xi=ψ)(Xj |Xt, G,D) for each intervention value.

E.7 Bayesian Optimisation for Experimental Design

In order to find the optimal experiment a⋆t = (I⋆,x⋆I) at time t, we compute the optimal intervention
value x⋆I ∈ argmaxx U(I,x) for each candidate intervention target set I (see Eq. (A.15)). As the
evaluation of our proposed utility functions U(a) is expensive, we require an efficient approach for
finding optimal intervention values using as few function evaluations as possible. Following von
Kügelgen et al. [67], we employ Bayesian optimisation (BO) [36, 37] for this task and model our
uncertainty in U(I,x) given previous evaluations DBO = {(xl, U(I,xl))}kl=1 with a GP. We select
a new candidate solution according to the GP-UCB acquisition function [63],

xk+1 = argmax
x

µk(x) + γσk(x) , (E.13)

where µk(x) and σk(x) correspond to the mean and standard deviation of the GP predictive distribu-
tion p(U(I,x) | DBO) (see Appx. C). We then evaluate U(I,xk+1) at the selected xk+1 and repeat.
The scalar factor γ trades off exploitation with exploration. In our experiments, we set γ = 1 and run
the GP-UCB algorithm 8 times for each candidate set of intervention targets.
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Algorithm 2: Particle Resampling

Input: set of latent particles z = {zk}Kk=1

Output: set of resampled latent particles z̃ = {z̃k}Kk=1
z̃ ← ∅ ▷initialise set of resampled particles
Nmax ←

⌈
K
4

⌉
▷max. number of particles to keep

{wk}Kk=1 ←
{

p(zk |x1:t) p̃(zk)∑
k p(zk |x1:t) p̃(zk)

}
▷compute particle weights

nkept ← 0
for wk in sort_descending({wk}Kk=1) do

if nkept < Nmax and wk > 0.01 then
z̃ ← z̃ ∪ {zk} nkept ← nkept + 1

end
else

znew ∼ p(Z)
z̃ ← z̃ ∪ {znew}

end
end

F Implementation Details

In this section, we give details about our implementation, including our particle resampling proce-
dure in Section F.1, the sharing and caching of priors in Section F.2, a discussion of the com-
putational complexity of our implementation in Section F.3, and finally some information on
our code framework and computing resources in Section F.4. Our implementation is available
at https://www.github.com/chritoth/active-bayesian-causal-inference.

F.1 Particle Resampling

As described in Alg. 1, we resample latent particles z = {zk}Kk=1 according to a predefined schedule
instead of sampling new particles from the particle prior p(Z) after each epoch. Although sampling
new particles would allow for higher diversity in the graph Monte Carlo samples and their respective
mechanisms, it also entails a higher computational burden as the caching of mechanism marginal log-
likelihoods is not as effective anymore. On the other hand, keeping a subset of the inferred particles
is efficient, because once we have inferred a “good” particle zk that supposedly has a high posterior
density p(zk |x1:t) it would be wasteful to discard the particle only to infer a similar particle again.
Empirically, we found that keeping particles depending on their unnormalized posterior densities
according to Alg. 2 does not diminish inference quality while increasing computational efficiency. In
our experiments, we chose the following resampling schedule:

rt =


1 if t ∈ {1, 2, 3, 4, 5, 6, 9}
1 if tmod 5 = 0

0 otherwise.

F.2 Shared Priors and Caching of Marginal Likelihoods

We share priors for mechanisms and noise p(fi, σi |G), as well as for GP hyperparameters p(κi |G),
across all graphs G that induce the same parent set PaGi . Consequently, not only the posteriors
p(fi, σi |G,x1:t) and p(κi |G,x1:t), but also the GP marginal likelihoods p(x1:t

i |G) and GP predic-
tive marginal likelihoods p(xt+1

i |G,x1:t) can be shared across graphs with identical parent sets for
nodeXi. By caching the values of the computed GP (posterior) marginal likelihoods, we substantially
save on computational cost when computing expectations of the form EG | z

[
p(x1:t |G)ϕ(G)

]
and

EG | z
[
p(xt+1 |G,x1:t)ϕ(G)

]
where ϕ(G) is some quantity depending the graph.

Specifically, consider that p(x1:t|G) =
∏
i p(x

1:t
i |G) factorizes into the GP marginal likelihoods of

the individual mechanisms, so for d nodes in the graph and N samples in x1:t (counted over all time
steps) the complexity of computing p(x1:t|G) is O(d ·N3) for a fixed set of GP hyperparameters (for
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simplicity we ignore that not all d mechanisms are modelled by GPs as some are root nodes, so this
is not a tight bound). Thus, in the worst case, estimating p(x1:t|z) = EG|z[p(x

1:t|G)] with K graph
samples would yield a complexity of O(K · d ·N3). By caching the marginal likelihoods as outlined
above we can rewrite the complexity O(K · d · N3) as O(L · N3) where L ≤ K · d denotes the
number of unique mechanisms entailed by the set of K graph samples. Although this does not reduce
the worst case complexity it nevertheless greatly alleviates the computational demand in practice.

The benefit of caching becomes even more pronounced as p(G | z) concentrates is mass on a small set
of similar graphs as a result of the inference process. In particular, when updating the latent particles
using SVGD we do not need to recompute p(x1:t |G) after we have once before sampled G, which
greatly speeds up the gradient estimation of the particle posterior.

F.3 Computational Complexity

There are two main phases in our algorithm (disregarding the computation of metrics for evaluation),
(i) the inference phase where we (approximately) infer the posterior over SCMs p(M|x1:t) after
collecting new experimental data, and (ii) the experimental design phase.

The inference phase has worst-case complexity in O(TSV GD · (THP ·M ·K · d ·N3 +M2 · d2))
where TSV GD is the number of SVGD update steps, THP is the number of GP hyperparameter update
steps, M is the number of latent z particles, K is the number of graph samples per latent z particle,
d is the number of nodes in the network, and N is the number of collected experimental samples
in x1:t. The computation of the GP marginal likelihood dominates the complexity of the inference
phase. To improve scalability we make use of shared priors and caching. Additionally, we update the
GP hyperparameters according to a predefined schedule instead of doing so after each performed
experiment. In our experiments, both measures reduce the factor THP ·M · K · d significantly.
For example, running inference with 5 freshly initialized z particles with 40 graph samples each
on a scale-free SCM with 20 nodes updates the hyperparameters of (2970, 964, 177) GPs during
SVGD update steps (1, 5, 10), and of less than 15 GPs after 20 SVGD update steps. Compared to
M ·K · d = 4000 in this example, the benefit is evident.

In the experimental design phase we parallelize finding the optimal intervention value for each
candidate target node, so the complexity is basically the number of Bayesian optimization (BO) steps
times the complexity of the utility we want to optimize for. For a general query (cf. Eq. (A.11))
we have complexity in O(TBO ·M ·Kouter · S ·Q ·M ·Kinner · (O(p(y|M) + d ·N3))) where
TBO is the number of Bayesian optimization iterations, M is the number of latent z particles,
Kouter is the number of graph samples in the outer SCM expectation in, S is the number of
simulated experiments per SCM, Q is the number of simulated queries, Kinner is the number
of graph samples in the inner SCM expectation, O( p(y|M) ) is the complexity of evaluating the
query likelihood and d · N3 is the complexity of evaluating the GP predictive posteriors for the
simulated experiments. For the causal discovery and model learning utilities the complexity reduces
to O(TBO ·M ·Kouter · S ·M ·Kinner · d ·N3).

In summary, the complexity of our ABCI implementation is dominated the experimental design
phase from a high-level perspective. On a lower level, the cubic scaling of GP inference is the
major computational issue that we alleviate by caching the (posterior) marginal log-likelihoods
(see Appx. F.2 for details). However, in a small data regime where experimental data is costly to
obtain, GPs are not a prohibitive element in our inference chain. Furthermore, GP scaling issues
could be alleviated, e.g., by using sparse GP approximation or any other kind of scalable Bayesian
mechanism model. Disregarding issues of GP scaling, the estimation of the information gain utilities
is still costly, simply because it requires many levels of nested sampling and too few Monte-Carlo
samples will yield too noisy, in the worst case unusable utility estimates. We believe that in follow-up
work much can be gained in terms of scalability as well as performance by incorporating recent
advances in nested Monte-Carlo/information gain estimation techniques(e.g., [6, 21, 51]).

Finally, consider that a single estimation of the causal discovery utility for an SCM with 20 nodes
with N = 500 previously collected experimental samples takes approximately 2 minutes on an
off-the-shelf laptop. Thus, for 10 BO iterations we can do the experimental design phase in 20
minutes (assuming we parallelize the utility optimization for each node). In a practical application
scenario one might be very willing to invest hours or days for the design phase before conducting a
costly experiment.
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F.4 Implementation and Computing Resources

Our Python implementation uses the PyTorch [44], GPyTorch [18], CDT [32], SKLearn [47], Net-
workX [22] and BoTorch [4] packages, which greatly eased our implementation efforts. All of our
experiments were run on CPUs. We parallelise the experiment design by running the optimisation
process for each candidate intervention set on a separate core.
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G Evaluation Metrics

In this section, we provide details on the metrics used to evaluate our method in Section 3 and Appx. H.
In our experiments, we use (nested) Monte Carlo estimators to approximate intractable expectations.

Kullback-Leibler Divergence. We evaluate the inferred posterior over queries given observed data,
p(Y |x1:t), to the true query distribution p(Y |M⋆) using the Kullback-Leibler Divergence (KLD),
i.e.,

KL(p(Y |M⋆)|| p(Y |x1:t)) = EY |M⋆

[
log p(Y |M⋆)− log p(Y |x1:t)

]
(G.1)

= EY |M⋆

[
log p(Y |M⋆)− logEM|x1:t [p(Y |M)]

]
. (G.2)

Query KLD. For Y = X
do(X3=ψ)
5 with ψ ∼ p(ψ) we have

Query KLD = Eψ
[
KL(pdo(X3=ψ)(X5 |M⋆)|| pdo(X3=ψ)(X5 |x1:t))

]
(G.3)

= Eψ
[
EX5 | do(X3=ψ),M⋆

[
log pdo(X3=ψ)(X5 |M⋆)− log pdo(X3=ψ)(X5 |x1:t)

]]
.

(G.4)

To approximate the outer two expectations, we keep a fixed set of samples for each ground truth
SCM to enhance comparability between different ABCI runs. For pdo(X3=ψ)(X5 |x1:t), we use the
estimator described in Section E.1.

SCM KLD. For Y = qCML(M) =M, we have

SCM KLD = KL(p(M|M⋆)|| p(M|x1:t)) (G.5)

= EM|M⋆

[
log p(M|M⋆)− log p(M|x1:t)

]
(G.6)

= 0− log p(M⋆ |x1:t) (G.7)
= − logEM|x1:t [p(M⋆ |M)] (G.8)

= − logEG,f ,σ2 |x1:t

[
p(G⋆,f⋆,σ2,⋆ |G,f ,σ2)

]
(G.9)

= − logEG,f ,σ2 |x1:t

[
p(G⋆ |G) p(f⋆ |f) p(σ2,⋆ |σ2)

]
. (G.10)

Now note that p(G⋆ |G) = 1 ifG = G⋆ and 0 otherwise, p(f⋆ |f) = δ(f⋆−f), and p(σ2,⋆ |σ2) =
δ(σ2,⋆ − σ2). Hence, the SCM KLD vanishes iff the SCM posterior p(M|x1:t) collapses onto the
true SCMM⋆, and is infinite otherwise.

Average Interventional KLD. Computing the KLD for Y = qCML(M) = M is not useful for
evaluation, since it vanishes when the SCM posterior p(M|x1:t) collapses onto the true SCMM⋆

and is infinite otherwise. For this reason, we report the average interventional KLD as a proxy metric,
which we define as

Avg. I-KLD =
1

d

d∑
i=1

Eψ
[
KL(pdo(Xi=ψ)(X |M⋆)|| pdo(Xi=ψ)(X |x1:t))

]
(G.11)

=
1

d

d∑
i=1

Eψ
[
EX | do(Xi=ψ),M⋆

[
log pdo(Xi=ψ)(X |M⋆)− log pdo(Xi=ψ)(X |x1:t)

]]
(G.12)

=
1

d

d∑
i=1

Eψ
[
EX | do(Xi=ψ),M⋆

[
log pdo(Xi=ψ)(X |M⋆) (G.13)

− logEM|x1:t

[
pdo(Xi=ψ)(X |M)

] ]]
.

As with the Query KLD, we keep a fixed set of MC samples per ground truth SCM to approximate
the two outer expectations to enhance comparability between different ABCI runs.

Expected Structural Hamming Distance. The Structural Hamming Distance (SHD)

SHD(G,G⋆) =
∣∣{(i, j) ∈ G : (i, j) ̸∈ G⋆}

∣∣+ ∣∣{(i, j) ∈ G⋆ : (i, j) ̸∈ G}∣∣ (G.14)
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denotes the simple graph edit distance, i.e., it counts the number of edges (i, j) that are present in the
prediction graph G and not present in the reference graph G⋆ and vice versa. We report the expected
SHD w.r.t. our posterior over graphs as

ESHD(G,G⋆) = EG |x1:t [SHD(G,G⋆)] (G.15)

AUPRC. Following previous work [14, 16, 35, 65], we report the area under the precision recall
curve (AUPRC) by casting graph learning as a binary edge prediction problem given our inferred
posterior edge probabilities p(Gi,j |x1:t). Refer to e.g. Murphy [42] for further information on this
quantity.
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Figure 5: Causal Discovery and SCM Learning on Scale-free Graphs with 10 Variables. Comparison
of the experimental design strategies with random and observational baselines on simulated ground truth models
with 10 nodes. Lines and shaded areas show means and 95% confidence intervals (CIs) across 50 runs (10
randomly sampled ground-truth SCMs with 5 restarts per SCM). The UCD and UCML objectives perform on par
with each other. Both clearly outperform the observational and random baselines on all metrics.

H Extended Experimental Results

Causal Discovery and SCM Learning for SCMs with d = 10 Variables. We report results on
ground truth SCMs with d = 10 variables and scale-free graphs in Fig. 5. We initialise all methods
with 5 observational samples and perform experiments with a batch size of 3. All other parameters
are chosen as described in Appx. E.

Causal Discovery and SCM Learning for SCMs with d = 20 Variables. To demonstrate the
scalability of our framework, we report results on ground truth SCMs with d = 20 variables and
scale-free or Erdős-Renyi graphs in Fig. 6 and Fig. 7, respectively. We initialise all methods with
50 observational samples and perform experiments with a batch size of 5. All other parameters are
chosen as described in Appx. E.

While ABCI shows clear benefits when scale-free causal graphs underlie the SCMs, we find that
the advantage of ABCI diminishes on SCMs with unstructured Erdős-Renyi graphs, which appear
to pose a harder graph identification problem. Moreover, we expect performance of our inference
machinery, especially together with the informed action selection, to increase when investing more
computational power to improve the quality of our estimates, e.g., by increasing the number of Monte
Carlo samples used in our estimators and increasing the number of evaluations during the Bayesian
optimisation phase.

Finally, in Fig. 8 we show that using a simple linear model (GP model with a linear kernel) is not
able to reasonably capture the characteristics of the ground truth model (non-linear GP model) due to
the model mismatch.

Learning Interventional Distributions vs. Causal Discovery and SCM Learning. We report
additional metrics for our causal reasoning experiment as described in § 3 in Figs. 9 and 10. The
key result here is that UCR yields a significantly lower Query KLD while exhibiting a worse ESHD
and Average I-KLD scores, which indicates that, indeed, the UCR learns only those parts of the model
that are relevant to reducing the uncertainty in our target query. This is more data efficient than trying
to learn the entire model first and then answering the causal query of interest.
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Figure 6: Causal Discovery and SCM Learning on Scale-free Graphs with 20 Variables. (Same figure
as in Fig. 2 with additional confidence intervals for OBS and RAND FIXED.) Comparison of the experimental
design strategy for causal discovery (UCD) with random and observational baselines on simulated ground truth
models with 20 nodes. Lines and shaded areas show means and 95% confidence intervals (CIs) across 15 runs
(5 randomly sampled ground-truth SCMs with 3 restarts per SCM). The UCD objective significantly outperforms
the observational and random baselines on all metrics.
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Figure 7: Causal Discovery and SCM Learning on Erdős-Renyi Graphs with 20 Variables. Comparison
of experimental design strategies for causal discovery (UCD) and causal model learning (UCML) with random and
observational baselines on simulated ground truth models with 20 nodes. Lines and shaded areas show means
and 95% confidence intervals (CIs) across 15 runs (5 randomly sampled ground-truth SCMs with 3 restarts per
SCM). The UCD and UCML strategies perform approx. equal to the strong random baseline (RAND) on all metrics,
however, all three are significantly better than the weak random (RAND FIXED) and observational baselines.
We expect that improving the quality of the UCD and UCML estimates (e.g., by scaling up computational resources
invested in the MC estimates) yield similar benefits of the experimental design utilities as apparent in Fig. 6.
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Figure 8: Causal Discovery and SCM Learning on Scale-free Graphs with 20 Variables. Comparison
of non-linear GP model with a linear model (linear GP kernel) for UCD an RAND on simulated ground truth
models with 20 nodes. Lines and shaded areas show means and 95% confidence intervals (CIs) across 15 runs
(5 randomly sampled ground-truth SCMs with 3 restarts per SCM). Clearly, the model mismatch in the linear
model prohibits the identification of the ground-truth graph.
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Figure 9: Learning Interventional Distributions. Comparison of the experimental design strategies with
random and observational baselines. Lines and shaded areas show means and 95% confidence intervals (CIs)
across 30 runs (10 randomly sampled ground-truth SCMs with 3 restarts per SCM). UCD, UCML and UCR perform
best w.r.t. the ESHD, Avg. I-KLD and Query KLD metrics respectively, which is expected.
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Figure 10: Learning Interventional Distributions. Comparison of the experimental design strategies with
random and observational baselines. Lines and shaded areas show means and 95% confidence intervals (CIs)
across 30 runs (10 randomly sampled ground-truth SCMs with 3 restarts per SCM). UCD, UCML and UCR perform
best w.r.t. the ESHD, Avg. I-KLD and Query KLD metrics respectively, which is expected.
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