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Abstract

Object rearrangement is a challenge for embodied agents because solving these
tasks requires generalizing across a combinatorially large set of underlying entities
that take the value of object states. Worse, these entities are often unknown and
must be inferred from sensory percepts. We present a hierarchical abstraction
approach to uncover these underlying entities and achieve combinatorial gener-
alization from unstructured inputs. By constructing a factorized transition graph
over clusters of object representations inferred from pixels, we show how to learn
a correspondence between intervening on states of entities in the agent’s model
and acting on objects in the environment. We use this correspondence to develop
a method for control that generalizes to different numbers and configurations of
objects, which outperforms current offline deep RL methods when evaluated on a
set of simulated rearrangement and stacking tasks.

1 Introduction

A core property of intelligence is the ability to re-purpose previously acquired knowledge for solving
new problems, but how to identify symmetries for factorizing modeling and control into independent
components has been a challenge for AI systems, which either assume human-defined abstractions to
begin with [11, 13] or learn monolithic representations with no clear mechanism for reuse [19, 30].

The problem of object rearrangement offers an intuitive setting for studying this problem of knowl-
edge reuse. Because the space of object configurations is combinatorially large, solving novel
rearrangement problems requires the agent to recognize that the same action for moving an object
from one location to another can be reused for different objects in different contexts. We can formulate
this problem as an offline goal-conditioned reinforcement learning (RL) problem, where the agent is
trained on a dataset of sensorimotor interactions and is evaluated on rearranging objects to satisfy
constraints depicted in a goal image. The research questions are, therefore, how can we enable the
agent to represent abstractions of objects in a way that is amenable for such reuse in control, and how
can we enable it to discover these abstractions on its own directly from the sensorimotor interface?

Our main contribution is a method called Hierarchical Abstraction (HA) that offers an answer to the
above questions. The key idea is to represent objects as independent and symmetric latents, which we
call entities, and factorize each entity hk into two parts, its identity zk and its state sk. The identity
is the part that is not affected by action and the state is the part that is. The modeling component
of our approach abstracts the dataset of sensorimotor interactions into a graph over state transitions
of individual entities. By construction, a state transition is agnostic to the identity of the entity or
the context entities present in the sensorimotor interaction from which it was learned, enabling it
to be reused across multiple entities and contexts. The control component of our approach then
re-composes sequences of state transitions to solve new rearrangement problems by inferring what
state transition can be taken given only the current and goal image observations.
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Figure 1: Overview (a) HA abstracts video interactions into a graph over state transitions of individual entities
with a two-level hierarchy. (b) To do so requires learning representations of entities in a way that exhibits a
correspondence between how model entities and how real objects transform under action. (c) The first level of
the hierarchy abstracts visual features into transitions over sets of entities. (d) The second level abstracts these
transitions into a graph of transitions over individual states. (e) HA decomposes the rearrangement task into a
subtask per entity and chooses actions by returning the action tagged to the edge between nodes in the graph.

In contrast to other works in object-centric learning [14–16, 21, 24, 31, 34, 40] which evaluate the
quality of inferred entities via segmentation metrics, we evaluate our inferred entities by how well
they can reused for solving tasks, which more directly assesses what we want an agent’s object
representations to do. Kulkarni et al. [23], Veerapaneni et al. [36] also evaluate on control tasks.
Whereas Kulkarni et al. [23] considers how object representations improve exploration, we consider
the offline setting which requires zero-shot generalization. The shooting-based planning method
in Veerapaneni et al. [36] suffers from compounding errors as other learned single-step models
do [20], but our non-parametric approach of composing previously seen transitions enables us to plan
for longer horizons. Indeed, our results show that HA outperforms both state-of-the-art offline RL
methods and slot-based planning methods across three simulated object rearrangement problems.

2 Hierarchical Abstraction

We present our method for solving object rearrangement problems from pixels. Given a transition
o, a→ o′ from the training set in which a single object k has been moved, the modeling problem is
to represent the state transition sk → sk′ as decoupled from the identity zk of the affected entity and
as decoupled from the other context entities h̸=k in the scene. The control problem is to compose
previously seen state transitions to satisfy goal constraints on new object configurations. Though we
do not assume the number of action primitives is finite, we assume the number of observed locations
can be clustered into a set of finite groups.

2.1 Modeling

Our modeling approach abstracts the training dataset of action-conditioned videos into a factorized
graph over state transitions that can be reused across different rearrangement problems. Constructing
such a graph decomposes into two representation learning problems: the first concerns how to
represent objects in a way that exposes their commonalities and the second concerns how to represent
actions in a way that enables them to be reused across these commonalities. Our key insight is that
these two problems are both different instances of the same fundamental problem of partitioning a
space into discrete groups, but at different levels of abstraction: learning how to cluster visual features
into entities (Fig. 1b) and learning how to cluster transitions over entity-sets into transitions over
individual states (Fig. 1c). Our model thus implements a two-level abstraction hierarchy (Fig. 1a).

Level 1: abstracting visual features into sets of entities The goal of the first level is to map
a transition over two video frames o1, a1 → o2 into a transition over entity-sets (h11, ..., h

K
1 ) →

(h12, ..., h
K
2 ) (Fig. 1c). The criteria our entity-set transitions should satisfy are (1) entities represent
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different objects in the scene, i.e. they are independent and symmetric and (2) only the state sk of
entity k changes, not its identity zk, i.e. the entity is factorized. Because each video transition depicts
only a single object being moved, we also want (3) the transition to be sparse, i.e. only one entity hk
changes in the transition and the rest h̸=k remain unchanged.

Our approach manually enforces independence, symmetry, and factorization but lets sparsity emerge.
Specifically, we formulate the inference of entity-sets as the application of an equivariant action-
conditioned sequential Bayesian filter with a mixture model as the latent state, where entity representa-
tions are the parameters of the mixture components. Given the connection between the slots produced
by slot attention (SA) [25] and mixture components Chang et al. [6], we concretely implement this
filter by temporally evolving the slots produced by the slot attention module of the state-of-the-art
SLATE architecture [32] with a transformer decoder (TD) [28, 35]. With h = (h1, ..., hK),

ht+1 = SA(ĥt, ot+1) ŝt+1 = TD (queries = st, keys/values = [st, at]) ,

where ĥt+1 = [zt, ŝt+1] and ĥ0 are independent samples from a Gaussian. This approach enforces
independence because ĥ0 are independent, symmetry because the transformer is equivariant, and
factorization because ẑt+1 is a copied from zt. Empirically, we find that this architecture models
sparse changes in the slots (Fig. 3). We call this implementation dynamic SLATE (dSLATE), but
our contribution of how structurally we enforce the above three criteria remains invariant to how the
sequential Bayesian filter is implemented, which we expect will advance beyond SA and TD.

Level 2: abstracting transitions over sets of entities into individual state transitions The goal
of the second level is to construct a state transition graph from a buffer of entity-set transitions
{(h1, ...hT )}Nn=1 produced from the first level (Alg. 1, Fig. 1d). Specifically, we seek each edge
of this graph to represent a state transition that has been shared across multiple entities in different
contexts in the training dataset, such that we can reuse such state transitions when choosing actions
for solving new rearrangement problems. Given our assumption that observed locations can be
grouped into a finite set of clusters, this goal translates into a problem of clustering state transitions,
and the problem of clustering state transitions reduces to clustering the states before and after the
transition. We treat each cluster centroid as a node in the state transition graph, and an edge between
nodes is tagged with the single action that transforms one node’s state to another’s.

Algorithm 1 Building the Graph
1: input model, buffer
2: for {(ot, at, ot+1)}n in buffer do
3: # infer entities from transition
4: {(ht, at,ht+1)}n ← model ({ot, at, ot+1}n).
5: # identify which entity changed in transition
6: {(hk

t , at, h
k
t+1)}n ← isolate ({(ht, at,ht+1)}n)

7: end for
8: # partition transitions by clustering entities
9: {s∗}Mm=1 ← cluster

(
{(skt , at, s

k
t+1)}Nn=1

)
10: # transitions between clusters are edges
11: initialize graph with nodes s[m]

∗ , for m ∈ [1 : M ]
12: for each {(hk

t , at, h
k
t+1)}n do

13: # infer cluster assignments
14: [i], [j]← bind

(
hk
t

)
, bind

(
hk
t+1

)
15: # tag edge with action at

16: graph.edges[i, j]← create-edge
(
s
[i]
∗

at→ s
[j]
∗

)
17: end for
18: return graph

To create the nodes, the first
step is to identify the entity hk

that dSLATE predicted was af-
fected by at in each transition
(ht, at,ht+1). Our isolate pro-
cedure achieve this by solving
k = argmaxk′∈{1,...,K} d(s

k′

t , s
k′

t+1)
to identify the index of the entity
whose state has most changed
during the transition, where d(·, ·)
is a distance function, detailed
in the Appendix. Having the
buffer of transitions over entity
sets {(h1, ...hT )}Nn=1 to a buffer
of individual entity transitions
{(hkt , at, hkt+1)}Nn=1, and thus a
buffer of individual state transitions
{(skt , at, skt+1)}Nn=1, the second
step is to cluster similar transitions
together by clustering the states
before and after each transition. Our cluster procedure achieves this by clustering over all states
together, which is sufficient since the end state of transition is the starting state of another. A proper
clustering should return centroids {s∗}Mm=1 that all correspond to actual states of entities, which we
hypothesize will correspond to actual locations in the training set based on how dSLATE is trained.

The purpose of edges between the nodes is to record an action that transforms an entity from one
state to another. For each entity transition (hkt , at, h

k
t+1) we bind hkt and hkt+1 to their associated

nodes s[i]∗ and s[j]∗ and create an edge between s[i]∗ and s[j]∗ tagged with action a, overwriting previous
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edges based on the assumption that with a proper clustering there should only be one action primitive
per pair of nodes. Applying the bind procedure to an entity hk returns the index of the cluster of the
centroid s∗ that is nearest to the entity’s state sk. For our experiments cluster is implemented with
K-means and bind is implemented with nearest neighbors using the same distance metric used for
K-means (see Appendix), but other clustering algorithms and distance metrics can also be used.

2.2 Control

Algorithm 2 Action Selection

1: given model, graph
2: input goal og , observation ot
3: # infer goal constraints and current entities
4: hg,ht ← model (og) , model (ot)
5: align entity indices of ht with those of hg

6: π ← align (ht,hg)
7: permute indices of ht according to π

8: ht ← (h
π[1]
t , ..., h

π[K]
t )

9: identify kth goal constraint to satisfy next
10: k ← select-constraint (ht,hg)
11: infer cluster assignments
12: [i], [j]← bind

(
hkt

)
, bind

(
hkg

)
13: action that transforms node [i] to node [j]
14: return graph.edges[i, j].action

Having constructed a graph of state transitions, our
approach for control re-composes sequences of state
transitions to solve new rearrangement problems.
Specifically, the agent decomposes the rearrangement
problem into a set of per-entity subproblems, searches
the transition graph for a transition that transforms
the current entity’s state to its goal state, and executes
the action tagged with this transition in the environ-
ment. This problem decomposition is possible be-
cause the transitions in our graph are constructed to
be agnostic to identity and context, enabling differ-
ent rearrangement problems to share solutions to the
same subproblems. The core challenge in deciding
which transitions to compose is in determining which
transitions are possible to compose. That is, the agent
must determine which nodes in the graph correspond
to the given goal constraints and which nodes corre-
spond to the entities in the current observation, but the current entities ht and goal constraints hg
must themselves be inferred from the current and goal observations ot and og , requiring the agent to
infer both what to do and how to do it purely from its sensorimotor interface.

Our approach takes four steps (Alg. 2, Fig. 3). The first step applies dSLATE to infer ht and hg from
ot and og. The second step permutes the indices of ht and hg to align the identities of hkt with hkg .
This step is necessary because the permutation invariance of the entities does not guarantee that the
entities with the same identities will have the same index k, i.e. zkt might not correspond to zkg . We
implement this using the Hungarian algorithm that minimizes the matching cost between zt and zg.
The third step selects which goal constraint hkg to satisfy next. In the case where objects can move
independently, we implement this select-constraint procedure by determining which constraint
hkg has the highest difference in state with its counterpart hkt , which reduces to solving the same
argxmax problem as in isolate. We discuss how we handle more complex dependencies in the
Appendix. Lastly, we bind hkt and hgt to the graph and return the action tagged to the edge between
their respective nodes. If an edge does not exist between the nodes, we simply take a random action.

3 Experiments

The crucial test for knowledge reuse is to solve a set of tasks from a part of the combinatorial space
of object rearrangement problems that are disjoint from the part of the space given for training, i.e.
generalizing to different numbers of objects. We measure the “fractional success rate:” the mean
change in the number of satisfied constraints divided by the number of initially unsatisfied constraints
for each episode. In the complete setting, all objects have an associated constraint, whereas in the
partial setting, only a subset of objects have associated constraints, and this is reflected in the goal
image (Fig. 2b). We consider three challenging environments: block-rearrange, robogym-rearrange,
and block-stacking. We compare against five baselines. We implement a version of MPC [36] by
replacing our factorized graph search with CEM. We investigate an ablation of HA that constructs a
monolithic graph over transitions between sets of slot states rather than individual slot states (MGS).
We also compare with state-of-the-art pixel-based behavior cloning (BC) and implicit Q-learning
(IQL) implementations based off of [22]. Our last baseline just takes random actions (Rand).

Results Figure 4 shows that HA performs significantly better than the baselines in combinatorial
generalization (about a 5-10x improvement). Notably, the MPC baseline performs poorly because its
rollouts are poor, and it is significantly more computationally expensive to run (11 hours instead of
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20 minutes). Fig. 3a shows a t-SNE plot of the factors over 100 batches in the training set, where
different colors label different clusters, with several clusters annotated with the average slot attention
mask for the entities in the cluster. The right panel of Fig. 3 walks through the steps our algorithm
takes to select an action, visualizing the align, isolate, and bind procedures, showing that the
entities inferred with dSLATE intuitively capture objects that can be independently acted upon.

Figure 2: Environments Our environments are (a) block-rearrange, (b) robogym-rearrange, and (c) block-
stacking. (a) shows the complete specification of goal constraints for all objects; (b) shows a partial specification
of goal constraints. (c) shows the case where some goal constraints are already satisfied in the initial observation.

goal𝑜! goal𝑜" goal𝑜#goal 𝑜$𝑜! 𝑜" 𝑜# 𝑜$
unaligned aligned unaligned aligned unaligned aligned unaligned aligned

goal 
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constraint
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abstract node

a) partition latent factors over the training set for each episode step:
b) align

c) isolate

d) bind

Figure 3: Qualitative walk-through. (a) shows the slot attention masks of the centroids from clustering states
in robogym-rearrange (b) shows a walk-through of how HA selects the next action.

Figure 4: Generalizing from an offline dataset of 4 objects to solving rearrangement tasks with 4-7 objects,
evaluated for 100 episodes across 10 seeds, showing standard error.

Table 1: block-rearrange, complete setting.
Method 4 5 6 7

Ours 0.94 ± 0.01 0.93 ± 0.00 0.93 ± 0.00 0.89 ± 0.00

Rand 0.06 ± 0.02 0.07 ± 0.03 0.07 ± 0.03 0.08 ± 0.03

MPC 0.16 ± 0.06 0.12 ± 0.04 0.11 ± 0.04 0.10 ± 0.03

MGS 0.07 ± 0.03 0.06 ± 0.02 0.07 ± 0.02 0.08 ± 0.03

IQL 0.07 ± 0.01 0.03 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

BC 0.03 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

Table 2: block-stacking, complete setting.
Method 4 5 6 7

Ours 0.58 ± 0.02 0.48 ± 0.02 0.35 ± 0.01 0.24 ± 0.01

Rand 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

MPC 0.03 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01

MGS 0.13 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01

IQL 0.19 ±0.02 0.12 ±0.01 0.13 ±0.02 0.07 ±0.01

BC 0.21 ±0.01 0.13 ±0.01 0.13 ±0.01 0.08 ±0.01

Table 3: robogym-rearrange, complete setting.
Method 4 5 6 7

Ours 0.64 ± 0.01 0.47 ± 0.01 0.49 ± 0.01 0.41 ± 0.01

Rand 0.01 ± 0.0 0.01 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

MPC 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

MGS 0.01 ± 0.0 0.01 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

IQL 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

BC 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table 4: block-stacking, partial setting.
Method 4 5 6 7

Ours 0.34 ± 0.01 0.27 ± 0.01 0.21 ± 0.01 0.15 ± 0.01

Rand 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01

MPC 0.04 ± 0.02 0.03 ± 0.01 0.02 ± 0.01 0.04 ± 0.01

MGS 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

IQL 0.14 ±0.01 0.06 ±0.01 0.04 ±0.00 0.03 ±0.01

BC 0.17 ±0.01 0.07 ±0.01 0.04 ±0.00 0.03 ±0.00

4 Discussion

We have demonstrated that HA outperforms various offline RL methods across three simulated object
rearrangement problems. We hope HA will inspire future work on how abstractions of independent
and symmetric entities can be learned and re-composed.
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A Additional Related Work

Structured MDPs. Many works have postulated that designing algorithms for structured MDPs will
lead to improvements in sample efficiency and generalization over existing algorithms for the standard
MDP formulation. The two closest types of MDP families to our work are factored MDPs [3, 4, 17],
relational MDPs [37], and object-oriented MDPs [9]. Factored MDPs [3, 4, 17] assume that the
environment can be represented by discrete attributes, and that transitions between these attributes
can be modeled as a Bayesian network. Our work differs from these in that we do not assume access
to these attributes and the dependency graph is also not assumed to be known. More importantly, the
focus in this work is on using attributes to factorize a task into subcomponents; and in particular being
able to generalize to new, more complex tasks at test time. Our approach is also related to Relational
MDPs and Object-Oriented MDPs [1, 9, 12], where states are described as a set of objects, each of
which is an instantiation of canonical classes, and each instantiated object has a set of attributes. Our
work is especially related to [18], where the aim is to show that by using a relational representation of
an MDP, a policy from one domain can generalize to a new domain through planning. However, we
discover both objects (identities) and attributes (states), and achieve generalization through factorized
planning, which grows linearly (rather than polynomially) in the number of factors.

B Implementation Details

This section details the implementation design decisions for each component of HA.

B.1 Level 1: abstracting visual features into sets of entities

Dynamic SLATE (dSLATE) maps a video demonstration to a sequence of transitions over sets of
entities. It consists of two main components: SLATE [32] and a transformer [28, 35] dynamics model.
Because SLATE itself also uses a transformer for generating image reconstructions, dSLATE uses
two transformers: one to recover the observation model E and one to recover the dynamics model P
of the structured MDP. We use SLATE

∏
kHk ×O →

∏
kHk to infer entities ht from observation

ot and initial guess ĥt. The entity hk is also referred to as a slot in [25, 32] and is split in half as
hk = (zk, sk). The first guess for each entity ĥk1 is sampled independently and identically distributed
from a unit Gaussian, whose parameters are also trained. The hyperparameters are given in Tab. 5.

SLATE preprocesses the image with a discrete variational autoencoder [29] into a grid of image
features, encodes these features into a grid of tokens, infers slots from this token grid with Slot
Attention [25], which also produces an attention mask attn over the features each slot attends to.
These slots are trained using a transformer decoder [28, 35] to autoregressively reconstruct the tokens
using the slots as keys/values.

We use the dynamics model
∏
k Sk×A →

∏
k Sk to predict a guess for ŝt+1 given the action at and

the inferred entities st from the previous time-step. This dynamics model is implemented also as a
transformer decoder, taking the entity states as queries, and the entity states and action as keys/values.
This enables us the dynamics model to model the future state of the slots as an equivariant function
of how the action affects it and of how it interacts with other entity states.

We trained dSLATE on an offline dataset of 5000 video demonstrations of length five, with each
frame transition showing one of four objects being moved to a different location. We used five
slots, one more than the number of objects, following the convention used in Van Steenkiste et al.
[34], Veerapaneni et al. [36].

B.2 Level 2: abstracting transitions over sets of entities into individual state transitions

HA constructs a graph of state transitions from a buffer of transitions over entity sets produced by
dSLATE, as described in Alg. 1. Each transition records the identity z, state s, and attn of each
entity of the entity sets ht and ht+1. We also record the pre-condition of the transition, which we
explain further in Appdx. B.3. Both s or attn can serve as the representation of the state. We found
that we obtained better clusterings when we used attn as the state for the block-* tasks and s as
the state for the robogym-rearrange task. We also empirically found that certain choices of distance
metric used for K-means clustering and binding (implemented as nearest-neighbors) depended
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Number of epochs 200
Episodes per epoch 5K
Episode length 5
Batch size 32
Peak LR (see caption)
LR warmup steps 30000
Dropout 0.1

Discrete VAE

Vocabulary Size 4096
Temp. Cooldown 1.0 to 0.1
Temp. Cooldown Steps 30000
LR (no warmup) 0.0003
Image Size (see caption)
Image Tokens Image Size / 4

transformer decoder
Layers 4
Heads 4
Hidden Dim. 192

Slot attention

Slots 5
Iterations 3
Slot Heads 1
Slot Dim. (hk) 192
Identity Dim. (zk) 96
State Dim. (sk) 96

transformer dynamics
Layers 4
Heads 4
Hidden Dim. 96

Table 5: Hyperparameters for training dSLATE These hyperparameters are almost identical to those found
in Singh et al. [32, Fig. 7], but because dSLATE operates on video demonstrations rather than static images, we
changed some hyperparameters to save memory cost. We changed the batch size from 50 to 32, the number of
transformer layers and heads from 8 to 4, the number of slot attention iterations from 7 to 3 without observing
a significant change in performance. We used a peak learning rate of 0.0002 and an image size of 64 for
*-rearrange. We used a peak learning rate of 0.0003 and an image size of 96 for block-stacking.

on which choice of state representation we used, and this is summarized in Table 6. The K-means
implmentation is adapted from https://github.com/overshiki/kmeans_pytorch. We found
that increasing the number of slot attention iterations improved the entities representations especially
when generalizing to more numbers of objects, so even though we dSLATE trained with slot attention
three iterations, for inferring the slots from the buffer we used seven iterations. Lastly, we found
that the number of clusters used to for K-Means is the most important hyperparameter for creating
a graph that reflected the state transitions. We swept over 16 to 50 clusters and report the optimal
number of clusters we found in Table 7.

State representation attn s

isolate distance metric d(·, ·) cosine cosine
cluster distance metric IoU squared Euclidean
bind distance metric cosine squared Euclidean

Table 6: Hyperparameters for constructing the transition graph with HA

block-rearrange robogym-rearrange block-stacking

number of clusters 30 45 47

Table 7: Number of clusters used for constructing the nodes of the transition graph.
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B.3 Action selection

Using dSLATE and the transition graph from HA, HA returns which action to execute in the
environment given a goal and current observation, as described in Alg. 2. It first infers goal constraints
hg and current entities ht from the goal observation og and current observation ot. It then uses the
align procedure to align the indices of the entities in hg and ht and uses the select-constraint
to choose the index k of the entity to affect. It binds hkt and hkg to the graph and returns the action
associated with the edge between their respective nodes. Because HA is a non-parameteric method, it
could be the case the graph does not contain such an edge. In this case, we sample a random action in
the environment, but future work will replace this step with a more sophisticated method.

To implement align we use the scipy.optimize.linear_sum_assignment implementation of
the Hungarian algorithm, with Euclidean distances between the zk’s as the matching cost.

In select-constraint, we are given the set of current entities ht whose indices are aligned with the
goal constraints hg and returns the index k of the goal constraint to satisfy next. By HA’ construction,
the edge between the nodes that hkt and hkg are bound to is the state transition that would be executed
if the action associated to the edge were taken in the environment. The select-constraint
procedure consists of three steps: (1) filtering possible transitions from impossible transitions (2)
ranking transitions (3) sampling a transition.

Filtering The filtering step implements HA’ model of possibility and impossibility. In the filtering
step, we consider, for each k, the transition between the nodes that hkt and hkg are bound to and mark
the transition as possible or impossible. It then returns the indices k over ht and hg whose associated
transition from hkt and hkg is possible.

According to HA, a state transition between node [i] and node [j] is possible if its preconditions
are met and there exists an edge for that state transition in the graph, and impossible otherwise. An
intuitive example of an impossible transition is to place a block midair at some intended height, but
this transition becomes possible if prior to the transition there already exists a stack of blocks that
would support the block if the block were to be placed at that intended height. The existence of
this supporting stack is thus the precondition for the transition to occur, rendering the stacked block
dependent on the blocks supporting it.

When there are no dependencies among the entities, as in the *-rearrange tasks where any object can
be moved to any open location without considering where other objects are, any transition present in
the graph is possible. When there are dependencies among the entities, as in block-stacking, we take
the precondition of the transition into account. Although a precondition of a transition from node [i]
to node [j] could be a function of both the source node [i] and destination node [j], for simplicity in
this paper we consider preconditions as only a function of the destination node [j], which rules out
the possibility of placing a block in midair like the above example.

Because a precondition in general is a set of constraints that need to be satisfied for the transition to
be possible, we represent the precondition of a transition into node [j] (denoting the state s[j]∗ ) as the
set of context states s[j

′]
∗ that are always present whenever the state s[j]∗ is present. Concretely, a block

at height 3 at location x is always accompanied by the presence of some block at height 2 and some
block at height 1, both at location x; the states denoting (location x, height 2) and (location x, height
1) are the context states of the state (location x, height 3) and therefore serves as its precondition. We
thus implement the precondition of a transition into node [j] by recording the indices j′ of the nodes
of states that are always present when node [j] is a destination node. To test whether a precondition is
satisfied for a given scene, we check if all nodes in the precondition set have a corresponding concrete
entity that can be bound to it.

Ranking The filtering step removes the indices from the entities ht and goal constraints hg whose
transitions are impossible, yielding a possibly smaller set of entities h̃t and constraints h̃g . That is, if
|ht| = |hg| = K, then |h̃t| = |h̃g| = K̃ ≤ K.

The goal of the ranking step is to compute a ranking among the indices of h̃t and h̃g for choosing
which index k to actually select to affect with an action. Intuitively, we should rank indices k
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according to how different skt and skg are because a difference indicates that the constraint hkg is not
satisfied. We reuse the distance metric d(·, ·) used for isolate to implement this ranking.

Sampling The goal of the sampling step is to select a k ∈ {1, ..., K̃} whose associated entity
we will affect with an action, given our ranking. One way to do this is to simply choose k as
k = argmaxk′∈{1,...,K̃} d(s

k′

t , s
k′

t+1) as in isolate, but we empirically found that sampling k from

a Categorical distribution whose pre-normalized probabilities are given by d(sk
′

t , s
k′

t+1) resulted in
better task performance so we used this stochastic sampling approach. One explanation for why using
the argmax may be worse is that it relies on the distance metric d(·, ·), and the state representation s,
to be such that the distance metric flawlessly assigns high value to entities k that need to be moved
and low value to entities k that do not need to be moved. But because the state space S is learned
through the dSLATE training process without explicit supervision on the geometry of the space, a
pair of points that should be farther apart than another set of points may not be accurately reflected
by using a fixed distance metric d(·, ·). Future work will investigate imposing explicit supervision on
the geometry of S.

C Baseline Implementation Details

Random (Rand) The random policy takes actions using env.action_space.sample().

Behavior cloning (BC) This approach trains a policy to output the actions directly taken in the
provided dataset. We use an MSE loss to train the policy to imitate the actions.

Implicit Q-learning (IQL) IQL is a simple, offline RL approach that uses temporal difference
(TD) learning with the dataset actions and trains a behavior policy value function. To produce an
optimal value function, IQL estimates the maximum of the Q-function using expectile regression
with an asymmetric MSE using the following objectives:

LV (ψ) = E(s,a)∼D[L
τ
2(Qθ̂(s, a)− Vψ(s))] where Lτ2(u) = |τ − 1(u < 0)|u2 (1)

LQ(θ) = E(s,a,s′)∼D[(r(s, a) + γVψ(s
′)−Qθ(s, a))2] (2)

Lπ(ϕ) = E(s,a)∼D[exp (β(Qθ̂(s, a)− Vψ(s))) log πϕ(a|s)]. (3)

The V (s) estimates are used for TD-backups and the optimal policy is extracted with advantage-
weighted behavioral cloning.

Model predictive control (MPC) This approach uses model predictive control with the cross
entropy method (CEM) to select actions, using the transformer dynamics model of dSLATE to
perform rollouts in latent space. This is similar to the approached used in OP3 [36], except that we
use more recently proposed architectural components (slot attention [25] instead of IODINE [15], a
transformer instead of a graph network [2, 7, 34]) so our MPC results are not directly comparable to
that of OP3. We use the same dSLATE checkpoint that was used for HA.

We implement this MPC baseline using the mbrl-lib library [27] with 10 CEM iterations, an elite
ratio of 0.05, and a population size of 250 which was the best configuration we found that fit within a
wall clock budget of two days for 8 objects and 100 test episodes. We swept over CEM iterations of
[5, 10, 20], elite ratio of [0.05, 0.1, 0.2], and population sizes of [250, 500, 1000], and found that the
elite ratio was the most important hyperparameter.

The cost function is computed by first aligning the predicted slots hT and goal constraints hg using
the same align procedure in B.3, and then adding up the squared Euclidean distance between slots
as cost =

∑
k(h

k
T − hkg)2.

Monolithic graph search (MGS) This approach is an ablation to HA that does not construct a
graph over state transitions of individual entities but instead constructs a graph over state transition
over entity sets, i.e. each transition is (s, a, s′) rather than (sk, a, sk′). As with MPC, we use the
same dSLATE checkpoint that was used for HA.

The purpose of this ablation is to elucidate the benefit of factorizing the transition graph over entities
rather than entity sets. Because nodes in this transition graph represent a set of entity states rather
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Figure 5: An example of solving a task in the robogym rearrange environment used in this paper.

Figure 6: The original Robogym rearrange setup

than individual entity states, we use Dijkstra’s algorithm, as in [10, 38, 39] to plan a unbroken path
from the node the initial observation is bound to to the node a goal observation is bound to. For each
time-step, we plan a path along the nodes using Dijkstra’s algorithm, then return the action associated
with the first edge along that path. Like HA, MGS is a non-parametric model, which means that for a
set of entities to be bound to a node in the graph, that node must contain the exact set of entity states
corresponding to the states of the entities. If we do not successfully bind to the graph, or if we do not
find a path between the current node and the goal node, we sample a random action as HA does.

D Environment Details

Block-rearrange is our simplest environment, and robogym-rearrange and block-stack each add
complexity along different axes. States and identities correspond to object locations and appearance
respectively. In block-rearrange (Fig. 2a), all objects are the same size, shape, and orientation.
S covers 16 locations in a grid. Z is the continuous space of red-green-blue values from 0 to 1.
robogym-rearrange (fig. 2b) adapts the rearrange environment from OpenAI [26] and removes the
assumption from block-rearrange that all objects are the same size, shape, orientation, and the
assumption of predefined locations. block-stack (fig. 2c) adds preconditions and postconditions on
whether objects can be moved: blocks can only be picked if from the top of a stack, and blocks
can only be placed at a given height if there is an object beneath to support it (otherwise it falls).
Block-rearrange and Block-stack are implemented in PyBullet [8] while Robogym-rearrange is
implemented in Mujoco [33].

Environments In block-rearrange, all objects are the same size, shape, and orientation and can
exist in any one of 16 locations in a grid. Colors are sampled in a continuous space of red-green-blue
values in [0, 1].

The robogym-rearrange environment (see figures 5 and 6) is adapted from the rearrange environment
in OpenAI’s Robogym simulation framework [26] and removes the assumption from block-rearrange
that all objects are the same size, shape, and orientation and the assumption of predefined locations.
Furthermore, due to 3D perspective, the objects can look slightly different in different locations. The
objects are uniformly sampled from a set of 94 meshes consisting of the YCB object set [5] and a
set of basic geometric shapes, with colors sampled from a set of 13. The camera angle is a bird’s
eye view over the table, and the size of each object is normalized by its longest dimension, so tall
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Figure 7: The performance of our method as the number of initialized clusters and batches from the training set
used to construct the graph, and the number of slots are varied.

thin objects appear smaller. The objects’ target positions are randomly sampled such that they don’t
overlap with each other or any of the initial positions, and the target orientation is set to be unchanged.
Due to the continuous nature of this environment, we define a match threshold of at most 0.05 for
both the initial pick position and the goal placement (the table dimensions are 0.6 by 0.8).

The block-stack environment adds preconditions and postconditions on whether objects can be moved:
blocks can only be picked if they are at the top of a stack, and blocks can only be placed at a given
height if there is already an object beneath to support it (otherwise it falls).

Sensorimotor interface Each observation is a tuple of an initial image displaying the current
observation and a goal image displaying constraints to be satisfied – the goal locations of the objects.
Each action is a tuple (w,∆w), where w is a three-dimensional Cartesian coordinate (x, y, z) in the
environment arena.

For the ∗-rearrange tasks, objects are initialized at random non-overlapping locations that also do not
overlap with their goal locations. For these tasks the z (height) coordinate is always fixed. For the
block-stack task, the goal locations are generated by randomly picking objects from the tops of stacks
and placing them on other stacks. For this task the y (depth) coordinate is always fixed.

An object is picked ifw is within a certain threshold of its location. For block-∗ where object locations
are fixed points in a grid the object is snapped to the nearest grid location to w +∆w. Constraints
are considered satisfied if objects are placed within a certain threshold of their target location.

E Additional Results

This section presents additional results and analyses of HA. We first analyze the sensitivity of task
performance to several hyperparameters used in HA from creating the graph: the number of clusters,
number of buffer size, and the number of slots used in slot attention. We next tested whether giving
our model-based baselines more computation time compared to HA would improve their performance
to be comparable to HA’s.

E.1 Analysis of key hyperparameters

In this section, we analyze the sensitivity of our method to various hyperparameters, evaluated in
the robogym environment with four objects in the complete goal specification. As Fig. 7 shows,
performance depends on the number of initialized clusters and the number of batches from the
training set used to construct the graph. With too few clusters, the clusters are too coarse-grained
to differentiate objects in significantly different positions, while with too many the performance
deteriorates as the data is needlessly split into duplicate clusters. Performance improves with more
data, as the graph has better coverage. Although our model performs worse when there are insufficient
slots to represent all objects present in the environment plus one empty slot, performance is barely
impacted by having double the number of necessary slots. Our method can thus still work in
environments with an unknown but upper-bounded number of objects.

E.2 More challenging evaluation settings

We analyzed HA in more challenging settings that reflect the noisy nature of real-world robotics. As
Fig. 8 (left) shows, HA is robust to the addition of Gaussian noise to the action at every time step,
up until the noise variance is comparable to the maximum distance for successful picking and goal
placements. The performance also remains high given significantly fewer steps (Fig. 8, right).
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Figure 8: The performance of HA on robogym-rearrange as we vary the amount of noise added to the actions,
and the interaction horizon (as a multiple of the minimum steps needed to complete the task).
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