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Abstract

There is growing interest in concept-based models (CBMs) that combine high-
performance and interpretability by acquiring and reasoning with a vocabulary
of high-level concepts. A key requirement is that the concepts be interpretable.
Existing CBMs tackle this desideratum using a variety of heuristics based on
unclear notions of interpretability, and fail to acquire concepts with the intended
semantics. We address this by providing a clear definition of interpretability in
terms of alignment between the model’s representation and an underlying data
generation process, and introduce GlanceNets, a new CBM that exploits tech-
niques from causal disentangled representation learning and open-set recognition
to achieve alignment, thus improving the interpretability of the learned concepts.
We show that GlanceNets, paired with concept-level supervision, achieve better
alignment than state-of-the-art approaches while preventing spurious information
from unintendedly leaking into the learned concepts.

1 Introduction

Concept-based models (CBMs) are an increasingly popular family of classifiers that combine the
transparency of white-box models with the flexibility and accuracy of regular neural nets [1–5]. At
their core, all CBMs acquire a vocabulary of concepts capturing high-level, task-relevant properties
of the data, and use it to compute predictions and produce faithful explanations of their decisions [6].

The central issue in CBMs is how to ensure that the concepts are semantically meaningful and
interpretable for (sufficiently expert and motivated) human stakeholders. Current approaches struggle
with this. One reason is that the notion of interpretability is notoriously challenging to pin down,
and therefore existing CBMs rely on different heuristics—such as encouraging the concepts to be
sparse [1], orthonormal to each other [5], or match the contents of concrete examples [3]—with
unclear properties and incompatible goals. A second, equally important issue is concept leakage,
whereby the learned concepts end up encoding spurious information about unrelated aspects of the
data, making it hard to assign them clear semantics [7]. Notably, even concept-level supervision is
insufficient to prevent leakage [8], cf. Fig. 3.
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Figure 1: Left: Architecture of GlanceNets showing the encoder qϕ, decoder pθ, classifier pW , and
open-set recognition step. Center: GlanceNets prevent leakage by identifying and rejecting open-set
inputs using a combined strategy, shown here for a model trained on digits “4” and “5” only: the “3”
is rejected as its embedding falls far away from classes prototypes (colored blobs), while the “8” is
rejected as its reconstruction loss is too large. Right: The data generation process.

Prompted by these observations, we define interpretability in terms of alignment: learned concepts
are interpretable if they can be mapped to a (partially) interpretable data generation process using a
transformation that preserves semantics. This is sufficient to unveil limitations in existing strategies,
build an explicit link between interpretability and disentangled representations, and provide a clear and
actionable perspective on concept leakage. Building on our analysis, we also introduce GlanceNets
(aliGned LeAk-proof coNCEptual Networks), a novel class of CBMs that combine techniques from
disentangled representation learning [9] and open-set recognition [10] to actively pursue alignment –
and guarantee it under suitable assumptions – and avoid concept leakage.

2 Concept-based Models

Concept-based models (CBMs) comprise two key elements: (i) A learned vocabulary of k high-level
concepts meant to enable communication with human stakeholders [11], and (ii) a simulatable [12]
classifier whose predictions depend solely on those concepts. Formally, a CBM f : Rd → [c], with
[c] := {1, . . . , c}, maps instances x to labels y by measuring how much each concept activates on the
input, obtaining an activation vector z(x) := (z1(x), . . . , zk(x)) ∈ Rk, aggregating the activations
into per-class scores sy(x) using a linear map [1], and then passing these through a softmax, i.e.,

sy(x) :=
∑

j wyjzj(x), p(y | x) := softmax(s(x))y. (1)

Each weight wyj ∈ R encodes the relevance of concept zj for class y. Now, it is possible to extract
human understandable local explanations disclosing how different concepts contributed to any given
decision (x, y) by looking at their activations and their associated weights, thus abstracting away the
underlying computations. This yields explanations of the form {(wyj , zj(x)) : j ∈ [k]} that can be
readily summarized and visualized [13, 14]. GlanceNets inherit this feature.

Crucially, CBMs are only interpretable insofar as their concepts are and existing approaches imple-
ment special mechanisms to this effect [1, 3, 5]. In our case, we consider Concept Bottleneck models
(CBNMs) [15, 4], which align the concepts using concept-level supervision, possibly obtained from a
separate source, like ImageNet [16]. From a statistical perspective, this seems perfectly sensible: if
the supervision is unbiased and comes in sufficient quantity, and the model has enough capacity, this
strategy appears to guarantee the learned and ground-truth concepts to match.

Unfortunately, concept-level supervision alone is not sufficient to guarantee interpretability. [7]
have demonstrated through simple examples that concepts acquired by CBNMs pick up spurious
properties of the data. This phenomenon is known as concept leakage. Intuitively, leakage occurs
because in CBNMs the concepts end up unintentionally capturing distributional information about
unobserved aspects of the input, failing to provide well-defined semantics. However, a clear definition
of leakage is missing, and so are strategies to prevent it: a key contribution of our paper is showing
that leakage can be understood from the perspective of domain shift and dealt with using open-set
recognition [10].
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3 Interpretability and Leakage

The main issue with heuristics used by CBMs is that they are based on unclear notions of inter-
pretability. In order to develop effective algorithms, we propose to view interpretability as a form of
alignment between the machine’s representation and that of its user.

Interpretability. We henceforth focus on the (rather general) generative process shown in Fig. 1
the observations X ∈ Rd are caused by n generative factors G ∈ Rn, themselves caused by a set
of confounds C (including the label Y [17]). Notice that the generative factors can be statistically
dependent due to the confounds C, but as noted by [18], the total causal effect [19] between Gi and
Gj is zero for all i ̸= j. The generative factors capture all information necessary to determine the
observation [20], so the goal is to learn concepts Z ∈ Rk that recover them. The variable T will be
introduced later on.

We posit that a (learned) representation is interpretable if it supports symbolic communication between
the model and the user, in the sense that it shares the same (or similar enough) semantics to user’s
representation. The latter is however generally unobserved. Then, we make a second assumption that
some of the generative factors GI ⊆ G are interpretable to the user and can be used as a proxy for
the user’s internal representation. Naturally, not all generative factors are interpretable [21], but in
many applications some of them are, e.g., the hair color or noise size in CelebA [22].

Interpretability as alignment. Under this assumption, if the variables ZJ ⊆ Z are aligned to
the generative factors GI by a map α : g 7→ zJ that preserves semantics, they are themselves
interpretable. One desirable property is that α does not “mix” multiple G’s into a single Z. This is
however insufficient: we wish the map between Gi and its associated factor Zj to be “simple”, so as
to conservatively guarantee that it preserves semantics. Motivated by this, we say that ZJ is aligned
to GI if: (i) the map α disentangles ZJ , i.e., according to [18], each latent factor Zj varies only upon
variations of a single generative factor Gi, and (ii) the scalar map αj(gi) is monotonic.

Achieving alignment with concept-level supervision. It has been shown that disentanglement
cannot be achieved in the purely unsupervised setting without strong inductive bias [23]. This
immediately entails that alignment is also impossible in that setting, highlighting a core limitation
of CBMs with no concept supervision. However, disentanglement can be attained if supervision
about the generative factors is available, even only for a small percentage of the examples [24]. Thus,
following CBNMs, we seek alignment by leveraging concept-level supervision.

Interpretability and concept leakage. Intuitively, concept leakage occurs when a model is trained
on a data set on which (i) some generative factors GV ⊂ G vary, while the others GF = G \GV

are fixed, and (ii) the two groups of factors are statistically dependent. For instance, in the even vs.
odd experiment of [7], no training examples are annotated with concepts besides 4 and 5. CBNMs
with access to supervision on GV tend to acquire a latent representation that approximates these
factors, and that because of (ii) correlates with the fixed factors GF .

In contrast with previous assessments [7, 8], we notice that point (i) can be viewed as a special form
of domain shift: the training examples are sampled from a ground-truth distribution p(X,G | T = 1)
in which GF is approximately fixed, e.g., p(GF | T = 1) = δ(g′

F ) for some vector g′
F , and the

test set from a different distribution p(X,G | T = 0) in which GF is no longer fixed. Here, T is a
random variable that selects between training and test distribution, see Appendix C. Since regular
CBMs have no strategy to cope with domain shift, they fail to adapt when this occurs.

Motivated by this, we propose then to tackle concept leakage by designing a CBM specifically
equipped with strategies for detecting instances that do not belong to the training distribution using
open-set recognition [10], inferring the value of T . This strategy proves very effective, as shown by
our evaluation (Section 5.2).

4 GlanceNets

GlanceNets combine a VAE-like architecture [25, 26] for learning disentangled concepts with a prior
and classifier designed for open-set prediction [27]. In order to accommodate for non-interpretable
factors, the latent representation of GlanceNets Z is split into two: (i) k concepts ZJ , aligned to the
interpretable generative factors GI , that are used for prediction, and (ii) k̄ opaque factors ZJ̄ that
are only used for reconstruction. Specifically, a GlanceNet comprises an encoder qϕ(Z | X) and a
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decoder pθ(X | Z), both parameterized by deep neural networks, as well as a classifier pW (Y | ZJ)
feeding off the interpretable concepts only. Following other CBMs, the classifier is implemented
using a dense layer with parameters W ∈ Rv×k followed by a softmax activation, and the most likely
label is used for prediction. The overall architecture is shown in Fig. 1.

In contrast to regular VAEs, GlanceNets associate each class to a prototype in latent space through the
prior p(Z | Y), which is conditioned on the class and modelled as a mixture of gaussians with one
component per class. The encoder, decoder, and prior are fit on data so as to maximize the evidence
lower bound, defined as [28] EpD(x,y)[L(θ,x, y;β)] with:

L(θ,x, y;β) := Eqϕ(z|x)[log pθ(x | z) + log pW (y | zJ)]− β · KL(qϕ(z | x) ∥ p(z | y)) (2)

Here, pD(x, y) is the empirical distribution of the training set D = {(xi, yi) : i = 1, . . . ,m}. As
mentioned in Section 3, learning disentangled representations is impossible in the unsupervised i.i.d.
setting [23]. Following [24], and similarly to CBNMs, we assume access to a (possibly separate)
data set D̃ = {(xℓ,gI,ℓ)} containing supervision about the interpretable generative factors GI and
integrate it into the ELBO by replacing the per-example loss L in Eq. (2) with:

L(θ,x, y;β) + γ · EpD̃(x,g)Eqϕ(z|x) [Ω(z,g)] (3)

where γ > 0 controls the strength of the concept-level supervision. Following [24], we implement this
term using the average cross-entropy loss Ω(z,g) := −

∑
k gk log σ(zk) + (1− gk) log(1− σ(zk)),

where the annotations gk are rescaled to lie in [0, 1] and σ is the sigmoid function.

In order to tackle concept leakage, GlanceNets integrate the open-set recognition strategy of [27].
This strategy identifies out-of-class inputs by considering the class prototype µy := Ep(z|y)[z] in
Rk defined by the prior distribution and the decoder pθ(x|z). During training, GlanceNets use the
training data to estimate: (i) a distance threshold ηy, which defines a spherical subset in the latent
space By = {z : ||µy − z|| < ηy } centered around the prototype of class y, and (ii) a maximum
threshold on the reconstruction error ηthr. If new data points have reconstruction error above ηthr
or they do not belong to any subset By, they are inferred as open-set instances, i.e., T̂ = 0. This
procedure is illustrated in Fig. 1.

Remark. Other disentanglement strategies can be naturally included in GlanceNets to increase
its alignment, e.g., with various methods in [29]. Since our experiments already show substantial
benefits for GlanceNets building on β-VAEs, we leave these extensions to future work.

5 Empirical Evaluation

5.1 GlanceNets achieve better alignment than CBNMs

In a first experiment, we compared GlanceNets with CBNMs on a classification tasks for which
supervision on the generative factors is available. In order to evaluate the impact of this supervision
on the different competitors, we varied the amount of training examples annotated with it from 1%
to 100%. For each increment, we measured prediction performance using accuracy, alignment and
explicitness using the lasso variant of DCI. Additional details are reported in Appendix B.

Data set. We carried out our evaluation on a very challenging real-world data set. CelebA-64 [22]
is a collection of 64 × 64 RGB images of over 10k celebrities. Images are annotated with 40
binary generative factors including hair color, presence of sunglasses, etc. Since we are interested in
measuring alignment, we considered only those 10 factors that CBNMs can fit well (in the Appendix).
We also dropped all those examples for which hair color is not unique, obtaining approx. 127k
examples. We kept the original train/validation/test split, as in Ref. [22], and we generated the labels
y clustering over the 10 binaries attributes using the algorithm in [30], for a total of 4 class labels.

Results and discussion. The results of this first experiment are reported in Fig. 2. In addition to
alignment, we also report explicitness [31], which measures how well the linear regressor employed
by DCI fits the generative factors. The higher, the better. Details on its evaluation are included in
Suppl. Material. The plots clearly show that, although the two methods achieve high and comparable
accuracy in all settings, GlanceNets attain better alignment in almost all percentages of attribute
supervision, with a single exception in CelebA using low values of supervision. The gap is evident
with full supervision, and GlanceNets still attain overall better scores in the 25% and 50% regime.
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Figure 2: GlanceNets are better aligned than CBNMs. Each column reports a different metric. The
horizontal axes indicate the % of training examples for which supervision on the generative factors is
provided. We compared GlanceNets with CBNMs.

On the other hand, performance are lower, but comparable, with 10% supervision. The case at 1%
refers to an extreme situation where both CBNMs and GlanceNets struggle to align with generative
factors, as is clear also from the very low explicitness.

5.2 GlanceNets are leak-proof

Next, we evaluated robustness to concept leakage in the MNIST scenarios, for which generative
factors are entangled. In the experiment, we compare GlanceNets with a CBNM and a modified
GlanceNet where the OSR component has been removed (denoted CG-VAE).

Leakage due to unobserved entangled factors. We start by replicating the experiment of Mahinpei
et al. [7]: the goal is to discriminate between even and odd MNIST images using a latent representation
Z = (Z4, Z5) obtained by training (with complete supervision on the generative factors) only on
examples of 4’s and 5’s. Leakage occurs if the learned representation can be used to solve the
prediction task better than random on a test set where all digits except 4 and 5 occur. During training,
we use the digit label for conditioning the prior p(Z | Y) of the GlanceNet. More qualitative results
are collected in Appendix D.

(a) (b) (c)

Figure 3: GlanceNets are leak-proof on MNIST. (a) Training set embedded by GlanceNet with
β = 100; axes indicate z4 and z5 and color the concept label, i.e., 4 vs. 5. (b) Latent representations
of the test images, divided in even vs. odd. Every ball in light gray denotes the region By. (c)
Information Leakage performances of the considered models: CBNM, CG-VAE and GlanceNet.

Fig. 3 (a, b) illustrates the latent representations of the training and test set output by a GlanceNet.
Here the OSR kicks in: if an input is identified as open-set, T is predicted as 0 by the OSR component
and the input is rejected. In all leakage experiments, we implement rejection by predicting a random
label. We measure leakage by computing the difference in accuracy between the classifier and an
ideal random predictor, i.e., 2 · |acc− 1

2 |: the smaller, the better. The results, shown in Fig. 3 (c), show
a substantial difference between GlanceNet and the other approaches. Consistently with [7], CBNMs
are affected by a considerable amount of leakage. This is not the case for our GlanceNet: most
(approx. 85%) test images are correctly identified as open-set and rejected, leading to a negligible
amount of leakage. The results for CG-VAE also indicate that removing the open-set component
from GlanceNets dramatically increases leakage back to more than CBNMs.

6 Related Work

Concepts lie at the heart of AI [32] and have recently resurfaced as a natural medium for commu-
nicating with human agents [11]. In XAI, they were first exploited by post-hoc approaches like
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TCAV [33], which can however be unfaithful to the model’s reasoning [34–36]. CBMs, includ-
ing GlanceNets, avoid this issue by leveraging concepts for computing their predictions. Existing
CBMs [2, 3, 37, 38, 1, 15, 4, 5] seek concept interpretability using heuristics, and the quality of
concepts they acquire has been called into question [39, 40, 7, 8]. We show that disentangled
representation learning helps in this regard.

Despite playing a large role in disentangled representation learning [41–43], interpretability has never
ben explicitly linked to disentanglement. Moreover, existing approaches make no distinction between
interpretable and non-interpretable generative factors and generally ignore human factors [12, 44],
and specifically disentanglement does not require the map between generative and latent factors
to preserve semantics. The work of Kazhdan et al. [45] is the only one that explicitly compares
disentangled representations and concepts, however it makes no attempt at linking the two notions.
Our work fills this gap.
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A Implementation details

All experiments were implemented using Python 3 and Pytorch [46] and run on a server with
128 CPUs, 1TiB RAM, and 8 A100 GPUs. GlanceNets were implemented on top of the
disentanglement-pytorch [47] library. Code for the complete experimental setup is available on
GitHub, and will be released upon acceptance. For each experiment, we used exactly the same archi-
tecture and number of latent variables for both GlanceNets and CBNMs to ensure a fair comparison.

A.1 GlanceNet and CBNM Architectures

In all experiments, we used exactly the same architecture and number of latent variables for both
GlanceNets and CBNMs to ensure a fair comparison.

Encoder architectures:

• CelebA: We leveraged the architecture of Ghosh et al. [48], which is a common reference for VAE
models on CelebA-64 [49]. The encoder is composed of four convolutions of depth 128, 256, 512,
1024 respectively, all with kernel size of 5, stride of 2, followed batch normalization and ReLU
activation.

The models had exactly as many latent variables as generative factors for which supervision is
available, which in our data set is 10.

Table 1: Structure of the encoder network used for CelebA.

INPUT SHAPE LAYER TYPE PARAMETERS FILTER ACTIVATION

(64, 64, 3) Convolution depth=128, kernel=5, stride=2 BatchNorm ReLU
(30, 30, 128) Convolution depth=256, kernel=5, stride=2 BatchNorm ReLU
(13, 13, 256) Convolution depth=512, kernel=5, stride=2 BatchNorm ReLU
(5, 5, 512) Convolution depth=1028, kernel=5, stride=2 BatchNorm ReLU
(1, 1, 1028) Flatten
(1, 1028) Linear dim=10+10, bias = True

Decoder architecture: All models share the same decoder architecture, obtained by stacking:

• A 2D convolution on the latent space with a filter depth of 256, kernel size of 1, and stride of 2,
followed by the ReLU activation;

• Five transposed 2D convolutions of depth 256, 256, 128, 128, 64, 64, and num_channels,
respectively, all with kernel of size 4 and stride 2.

Here, num_channels is 3. The shape of the last layer was chosen so as to match the dimension of
the input image. Additional details can be found in the various Tables in this appendix.

Table 2: Structure of the decoder network.

INPUT SHAPE LAYER TYPE PARAMETERS ACTIVATION

(dim(z)) Unsqueeze
(dim(z), 1, 1) Convolution depth=256, kernel=1, stride=2 ReLU
(256, 1, 1) Deconvolution depth=256, kernel=4, stride=2 ReLU
(256, 2, 2) Deconvolution depth=128, kernel=4, stride=2 ReLU
(128, 6, 6) Deconvolution depth=128, kernel=4, stride=2 ReLU

(128, 14, 14) Deconvolution depth=64, kernel=4, stride=2 ReLU
(64, 30, 30) Deconvolution depth=64, kernel=4, stride=2 ReLU
(64, 62, 62) Deconvolution depth=num_channels, kernel=4, stride=2

A.2 Supervision and Training

Concept-level supervision. Depending on the supervision provided, only a fraction of the inputs
was made available during training with their generative factors. We restricted learning to those
10 attributes that are best fit by the CBNMs, namely: bald, black hair, brown hair, blonde
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hair, eyeglasses, gray hair, male, no beard, smiling, and wearing hat. Both CBNMs and
GlanceNets are jointly trained, meaning that optimization steps for the concepts and label supervision
are taken simultaneously. Whenever concept supervision is lower than 100%, for those examples
without concept annotations we trained both models using label supervision only. We did not evaluate
other training strategies available for CBNMs (e.g., sequential training [15]) as these appear to bring
no benefit in terms of either performance nor leakage.

Optimization setup. In all experiments, we used the Adam optimizer [50] with default parameters
β1 = 0.9 and β2 = 0.999. We used a batch size of 100 and annealed the learning rate from 10−7 to
ηCelebA = 10−4. To prevent overfitting, we multiplied the learning rate by a factor of 0.95 in each
epoch and apply early stopping on the validation set, with a patience of 10 epochs.

Prior to training, we selected a reasonable value for the following hyper-parameters:

• β: the weight of the KL divergence in Eq. (2).

• γ: the weight of the loss on the generative factors in Eq. (3).

• λ: the weight of the cross-entropy loss over the label, which is left implicit in Eq. (2).

We achieved good performance with λ = 103 and γ = 7 · 103, with the exception that we reduced
the reconstruction error by 0.01. This error was restored to 1 for additional tests Fig. 7. Moreover,
we cross-validated over different values of β but we obtained better alignment performances with
β ≈ 1. This happens because we inject supervision on the latent factors (which is absent in regular
β-VAEs [51]).

A.3 Implementation of leakage tests

MNIST. For this dataset, we considered only Multi-Latyer Perceptrons instead of convolutions. Both
the encoder and the decoder are composed by two linear layers with depth 128, and a dense layer
connected to the latent space and to the input space, respectively. Further details are on Table 3.

For the GlanceNet we considered a latent space of dimension 10 where the supervision on the 4 and 5
digits is used to fit the {z4, z5} latent factors. These two, constitute the latent subspace where leakage
occurs, while the other are useful only for reconstruction. Conversely, for the CBNM we considered
only two latent factors.

During training of the latent encodings, we used stochastic gradient descent with learning rate
η = 0.001, reducing it by 0.95 in each epoch for both CBNMs and GlanceNets. The training was
performed only on the 4 and 5 digits (in the usual training set partition for MNIST), for almost 50
epochs. Afterwards, we considered the open-set representations, restricted to {z4, z5}, as inputs for
training a logistic regression for parity recognition. During the training, only the digits in the MNIST
training set partition (exception made for 4 and 5) are considered, while performance are calculated
on the test set.

Table 3: Encoder and Decoder structures for MNIST

TYPE INPUT SHAPE LAYER TYPE PARAMETERS ACTIVATION
ENCODER

(28, 28) Flatten
(784) Linear dim=128, bias=True ReLU
(128) Linear dim=128, bias=True ReLU
(128) Linear dim=10+10, bias=True

DECODER
(dim(z)) Linear dim=128, bias=True ReLU
(128) Linear dim=128, bias=True ReLU
(128) Linear dim=728, bias=True
(728) Unsqueeze
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B DCI framework

In our case study, we are interested into DCI maps that linearly connect the z′s to the g′s . In order
to evaluate alignment performances, the inverse map α−1 : Rk → RnI is constructed from the latent
space to the span of the nI generative factors. The latent representations and generative factors were
normalized in the [0, 1] interval prior to learning.

B.1 Alignment and explicitness

The importance weights of this map are the absolute-values of the weights in the linear matrix of
α−1, indicated as B ∈ Rk×nI in the main text, see Section 3. Then, the importance weights are used
to evaluate the dispersion of the learned weights. To this end, we measure each Shannon entropy Hj

on all k latent factors:

Hj = −
nI∑
i∈1

b̄ji logn b̄ji where b̄ji = bji
/ nI∑

ℓ=1

bjℓ (4)

Then, the average alignment is calculated as:

alignment = 1−
k∑

j=1

ρjHj where ρj =

nI∑
i=1

bji

/ k,nI∑
j′=1,i=1

bj′i (5)

and ranges in [0, 1]. Similarly, the quantity:

b̃ji = bji
/ k∑

ℓ=1

bℓi and H̃i =

k∑
j=1

b̃ji logk b̃ji (6)

is the completeness of the latent representation, a measure akin to alignment (Eq. (5)) that quantities
the degree to which each generative factor correlates with distinct latent factors. Alignment and
completeness relate to different properties of the map: the higher the alignment, the more each Zj

depends on variations of only a single Gi. On the other hand, learning multiple Zj’s capturing a
single Gi reduces the completeness. As an illustrative example, consider the matrix:

B =


1 0 0
0 0 1
0 1 0
0.2 0 0
0 0.2 0


From the above definitions, one gets alignment = 1 and completeness < 1. This follows since
each Shannon entropy for the alignment score is zero (as it is related to the rows), whereas the
Shannon entropy for the completeness is greater than zero (it refers to the columns). Moreover, each
latent variable zi depends only on the variations of a single generative factor gj .

We also calculate the explicitness of the map α, which is related to the mean squared error (MSE) of
the prediction. Since the MSE for random guessing for a variable in the [0, 1] interval is equal to 1/6,
the explicitness becomes:

explicitness = 1− 6 · MSE

B.2 Empirical evaluation

Since the 40 attributes in CelebA are not exhaustive for the image generation, we implemented
computed DCI as follows: (i) we first converted the J attributes zJ and gJ connected to hair type
to a single concept h and fit the model with Lasso regression to predict gh from z. Then, (ii) we
trained a Logistic Regression with l1 penalty to predict the remaining g′s. Finally, we took both
weights in (i) and in (ii) to compute the matrix B ∈ R6×6. In this way, we determined alignment and
explicitness for CelebA. We chose the lasso coefficient λ = 0.01 for both regressions.
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Figure 4: Latent space representation for MNIST. On the first row, we report the representations
for 4 and 5 as fitted by CBNM, VAE and GlanceNet, respectively. On the second row, we display
the scattering plot for points only belonging to the open set. For CBNM, we separated even and odd
instances by ∆y = 2, since their representations strongly overlap. All plots comprise only the z4, z5
axes.

C Open-Set Recognition Mechanism

In this section, we provide additional details on the OSR mechanism introduced in Section 3. Our
method adapts the one of Sun et al. [27], which distinguishes between closed-set and open-set data
points by combining a reconstruction check Γr with a localization check Γls. The overall OSR check
is given by:

T̂ = Γr ∧ Γls (7)
After completing the training process, all the training instances are passed to the model to evaluate
the thresholds:

• The reconstruction threshold ηr is the maximum real number such that a fixed percentage of
training examples have reconstruction error less or equal to it. At test time, given an instance
x, let η̂ = ∥x− x̂∥2 be the reconstruction error. Then, Γr = 1 (i.e., the check passes) if the
empirical reconstruction error is less than the threshold, η̂ < ηr, otherwise Γr = 0.

• The latent-space distance thresholds are evaluated for each class-prototype embedded in
the latent space µy = Ep(z|y)[z]. For each of them, we first evaluated the relative distance
between point belonging to the class y and the prototype µy . Then, we evaluated a threshold
ηy on the distances, as to include a fixed percentage of training instances into the set
By = {z : ∥µy − z∥ < ηy}. At test time, those points that do not belong to any set By are
predicted as open-set instances, i.e. Γls = 0, otherwise Γls = 1.

In our experiments, the threshold are obtained by fixing both reconstruction and latent space distance
to keep the 95% of training data. In the case of ηy, this quota has been reached singularly for each
By , thus obtaining different values ηy’s from one another. Finally, combining both rejection methods
we are sure the model would predict as closed-set at least the 90% of training instances.

D Concept Leakage in MNIST

We report here additional details for the concept leakage test on MNIST, which has been originally
introduced by Margeloiu et al. [8]. The experiment has two stages:

1. At train time, the model is trained to align its representations to the concepts of 4 and 5,
by passing full supervision on them. Both CBNMs and GlanceNets are allotted two latent
concepts, which we denote (Z4, Z5). There is no downstream classification task in this
stage.
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2. At test time, all MNIST images, excluding those of 4’s and 5’s, are encoded using the
learned encoder and used to learn a classifier of even vs. odd digits. The performance of the
resulting classifier, applied to non-{4, 5} images, is then computed.

In this experiment, concept leakage occurs if the accuracy on the downstream task is above the 50%.

D.1 Qualitative results

In Fig. 4, we show the latent space representations for different models on the MNIST leakage
test, for both closed-set and open-set data points. To illustrate the contribution of our mixture prior,
in addition to the CBNM and GlanceNet models, we also considered a simpler supervised VAE
model. This model has the same encoder, decoder, and classifier as the GlanceNet, but uses a regular
Gaussian prior1. We found that this model achieved a similar level of leakage to CG-VAE. We display
in Fig. 5 the reconstruction of a few random examples output by GlanceNet: the reconstructions of
all instances belonging to the open-set greatly deviate from the original.

Figure 5: MNIST reconstruction with GlanceNet. On the left we reported the original digits,
whereas on the right the reconstruction with the learned decoder. All images have been inverted in
the black and white scale.

E Additional results for GlanceNets and CBNMs in CelebA

In this section, we discuss additional results for CBNMs vs. GlanceNets on the CelebA dataset. We
first report the accuracy of the learned concepts on the supervised latent factors for both CBNMs
and GlanceNets in CelebA. Then, we examine two variants of GlanceNets varying the dimension of
the unsupervised factors in the latent space: a β-VAE with 20 latent factors and a β-TCVAE with
40 latent factors, [52]. This variant includes an additional loss term to Eq. (3) given by the Total
Correlation (TC) of the model posterior qϕ(z) = EpD(x)[qϕ(z|x)]:

(β − 1) · KL
(
qϕ(z)||

k∏
i=1

qϕ(zi)
)

(8)

where β denotes the strength hyper-parameter. Both the β-VAE and the β-TCVAE receive supervision
only on the 10 generative factors that are fitted in the CBNM. A the end of the section, we report
traversals for the models with 40 latent factors.

E.1 Concepts Accuracy

We report the concepts accuracy for both CBNMs and GlanceNets in Fig. 6, with 10 latent dimensions
and the TCVAE variant. The difference in concept accuracy between GlanceNet (both variants) and
CBNMs is negligible, with GlanceNets showing slightly higher variance when the percentage of
concepts supervision is very small. This highlights how, in terms of concept accuracy, the two classes
of models are essentially indistinguishable, even though they are in terms of alignment.

E.2 Performances upon variations of the latent space dimension

Similarly to the analysis in Section 5.1, we show the behavior of the metrics upon increasing the
dimension of the latent space. The first variant of GlanceNets, based on β-VAE, was fitted with
β ≈ 1, with a latent space of dimension 20. The second variant is a TCVAE, trained with a weight of

1For the VAE model, we chose the Gaussian prior in [25], i.e., p(z) = N (z|0, 1).
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CBNMS vs GLANCENETS (10) CBNMS vs GLANCENETS (40)

Figure 6: Concepts accuracy for CBNMs vs GlanceNets. Different colors refer to the distinct
attributes for which supervision is provided. The solid line is reserved to CBNMs, whether GlanceNets
are displayed with a dotted line. On the left, CBNMs vs GlanceNets with a latent space of dimension
10. On the right, CBNMs vs GlanceNets with TCVAE variant and a latent space of 40.

the total correlation β = 10 for all concepts supervisions, exception made for the 100% run, where
we found better results with β = 0.5. We measured alignment and explicitness for both variants of
GlanceNets by restricting on only those 10 latent factors where supervision were provided. This is
in line with the notion of alignment, since we are interested in measuring the interpretability of the
model, not the disentanglment among different components.

In Fig. 7 we report the results obtained, including the original variant with 10 latent dimensions. For
the β-VAE (20) and TCVAE (40) we can see the improvement provided by extending the latent space.
The latter achieves particular high values of alignment.
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Figure 7: Accuracy, Alignment and Explicitness metrics for CBNMs vs GlanceNets. For each row
we vary the comparison with variants of GlanceNets: β-VAE (10) refers to the model we reported in
the main text, β-VAE (20) is a variant with 20 latent dimensions, and TCVAE (40) is the model based
on a TCVAE with 40 latent dimensions.

E.3 Latent traversals

We finally report in the traversals for some of the supervised attributes, obtained by the GlanceNet
TCVAE with full supervision on the concepts. We excluded the traversals of the attributes HAT and
BALD since the generator failed to reproduce them faithfully. The others are well captured by the
model, as we reported in Fig. 8.
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Figure 8: Latent traversals on two test images. In each row, we report the result of changing a single
latent factor Zi (from −5 to +5) while keeping fixed the others.
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